본 논문에서는 심층 신경망을 기반으로 하는 감정 인식을 위해 스파이크 특성을 추출하는 기술을 제안한다. 기존의 심층 신경망을 이용한 감정 인식 기술은 대부분 MFCC를 특성 백터를 사용한다. 그러나 프레임 단위의 연산인 MFCC는 높은 시간 해상도를 확보하기 어려워 시간적 특성의 영향을 받는 감정 인식에 한계가 있다. 이를 해결하기 위해 본 논문에서는 인간의 청각 필터를 모델링한 ERB에 따라 샘플 단위로 주파수의 특성을 나타내는 스파이크그램을 이용한 감정 인식 기술을 제안한다. 제안하는 방법이 감정 인식의 대표적 특성인 MFCC보다 높은 인식률을 제공하는 것을 확인하였다.
본 논문은 음성인식 기술을 사용자 인터페이스로 하여 국내 행정 단위 시(도), 구(군), 동(읍,면), 번지로 구성되는 주소를 인식의 대상으로 하는 주소 입력 시스템 구축에 대하여 기술한다. 본 시스템은 사운드카드가 장착된 개인용 컴퓨터상의 윈도우 95환경에서 동작하며, 음성인식부는 인식의 기본단위로 유사음소단위(Phoneme Like Units: PLUs)를 이용하여 CHMM(Continuous Hidden Markov Model) 음소모델을 작성하고, 주소인식을 위해서 주소명의 특징을 고려하여 이에 적합한 유한상태 오토마타(Finite State Automata)를 구성하여 OPDP(One Pass Dynamic Programming)법으로 인식을 수행하였다. 실용성있는 시스템 성능을 얻기 위하여 마이크, 환경잡음 및 화자의 변화 등의 사용환경변화에 대해 최대사후확률추정법(Maximum A Posteriori Probability Estimation: MAP)으로 적응화시켜 인식률의 향상을 도모하였고, 개인용 컴퓨터상에서의 인식속도를 향상시키기 위하여 가변프루닝 문턱치를 이용한 고속화 기법을 제안하였다. 평가결과, 화자적응화 후의 성인 남자 3인에 대한 100개의 연결주소명의 연결단어 인식률은 평균 96.0%이상, 인식속도는 발성완료후 약 2초 이내로 인식이 완료되어 본 시스템의 유효성을 확인할 수 있었다.
오늘날 정보 추출의 한 단계로서 개체명 인식은 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 개체명은 일반 단어와 달리 다양한 문서에서 꾸준히 생성되고 변화되고 있다. 이와 같은 개체명의 특성 때문에 여러 응용 시스템에서 미등록어 문제가 야기된다. 본 논문에서는 이런 미등록어 문제를 해결하기 위해 기계학습 기반 개체명 인식 시스템을 위한 새로운 자질 생성 방법을 제안한다. 일반적으로 기계학습 기반 개체명 인식 시스템은 단어 단위의 자질을 사용하므로 구절 단위의 개체명을 그대로 자질로 사용할 수 없다. 이 문제를 해결하기 위해 본 논문에서는 새로운 구절 단위의 정보를 단어 단위의 자질로 변환하는 자질 생성 방법을 제안하였다. 이 방법으로 개체명 사전과 WordNet을 개체명 인식의 자질로 사용할 수 있었다. 그 결과 영어 개체명 시스템은 F1 점수의 약 6%가 향상되었고 오류의 약 38%가 줄어들었다.
한국어 음성인식 결과의 형태소 분석은 한국어 문서의 분석보다 더 많은 문제점을 가지고 있다. 음성 인식의 낮은 인식률, 여러 개의 후보를 제시하는 경우의 지수적 가능성, 말하는 단위와 띄어쓰기 단위의 불일치, 형태소 안에서 그리고 형태소와 형태소 사이에서 일어나는 음운 변동등이 음성 인식 결과를 분석할 때 추가되는 문제점이다. 본 논문에서는 한 음소에 대해 여러 개의 후보를 제시하는 음성 인식 결과에 대하여, TRIE 인덱싱, 어절 간의 접속을 위한 확장된 접속 검사, 음운 변동을 고려한 사전구성, 음운 접속 정보를 사용하는 형태소 분석 방법을 제안한다.
본 논문에서는 일한 음차 변환을 이용한 음성인식 및 합성기를 구현하였다. 음성인식의 경우 CV, VCCV, VCV, VV, VC 단위를 사용하였다. 이와 같이 단위별로 미리 구축된 모델을 결합함으로써 음성인식 시스템을 구축하였다. 따라서 일한 음차 변환을 적용하게 되면 인식 대상이 일어단어일 경우에도 이를 한글 발음으로 변환한 후 그에 해당하는 모델을 생성함으로써 인식이 가능하다. 음성 합성기의 경우 합성에 필요한 한국어 음성 데이터 베이스를 구축하고, 입력되는 텍스트에 따라 이를 연결하여 합성음을 생성한다. 일어가 입력될 경우 일한 음차 변환 규칙을 이용하여 입력된 일어 발음을 한글로 바꾸어 준 후 입력하게 되므로 별도의 일어 합성기 없이도 합성음을 생성할 수 있다.
본 논문에서는 자연스러운 온라인 필기체 문자 인식을 위하여 획 기반 HMM(Substroke HMM)을 기반으로 한 인식 방법을 채택하고, 획 분류의 정확도 향상을 위한 전처리 과정에 대해 재샘플링 간격 조정을 통한 획 분류실험을 통해 인식률 제고에 관한 실험을 수행하였다 필기체 문자인식을 위한 방법으로 한 문자 전체를 HMM으로 구성하는 Whole-character HMM과 자소단위를 HMM으로 구성하는 character HMM을 주로 이용하였으나, 이러한 방법은 문자의 수에 비례하여 비교적 큰 메모리 용량과 계산량이 요구되는 단점이 있다. 이러한 단점을 개선하기 위한 획 기반 HMM은 문자를 획 단위로 분류한 후 이를 HMM 모델로 구성하므로 소수의 획 기반 HMM 모델만으로 문자를 모두 표현할 수 있는 장점을 가지고 있어, 인식률의 큰 저하 없이 계산량 및 메모리 용량을 크게 줄일 수 있다. PDA상에서 수집한 완성형 한글 데이터베이스를 사용하여 획 분류 실험을 수행한 결과 평활화와 7/100 길이의 재샘플링을 수행한 경우 평활화 과정을 추가하지 않은 기존의 재샘플링 5/100 길이의 경우에 비해 정확도가 평균 3.7% 향상을 나타내었으며, 특히 첨가 에러율이 감소함을 확인할 수 있다.
본 논문에서는 영한 음차 변환을 이용한 음성인식 및 합성기를 구현하였다. 음성인식의 경우 CV(Consonant Vowel), VCCV, VCV, VV, VC 단위를 사용하였다. 위의 단위별로 미리 구축된 모델을 결합함으로써 무제한 음성인식 시스템을 구축하였다. 따라서 영한 음차 변환을 이용하게 되면 인식 대상이 영어단어일 경우에도 이를 한글 발음으로 변환한 후 그에 해당하는 모델을 생성함으로써 인식이 가능하다. 음성 합성기의 경우 합성에 필요한 한국어 음성 데이터 베이스를 구축하고, 입력되는 텍스트에 따라 이를 연결하여 합성음을 생성한다. 영어가 입력될 경우 영한 음차 변환을 이용하여 입력된 영어발음을 한글로 바꾸어 준 후 입력하게 되므로 별도의 영어 합성기 없이도 합성음을 생성할 수 있다.
데이터의 압축은 화일의 저장공간과 전송시간을 줄이는 중요한 이점을 제공한다. 국내에는 많은 경우 데이터 화일에 2 바이트로 구성된 표준한글부호를 포함하고 있다. 본 논문에서는 2 바이트로 부호화 된 한글을 포함한 데이터 화일을 허프만 부호화 방식에 의해 압축 할때 한글을 한 바이트 단위로 인식하여 압축하는 경우와 두 바이트 단위로 인식하여 압축하는 경우의 여러가지 압축 특성을 비교하였다. 아울러 사전에 조사된 한글의 찾기 순서에 따라 고정된 압축 부호를 사용하는 경우와 앞에서 제시된 방법들을 비교하였다. 비교 결과 두 바이트 단위로 인식하여 압축하는 방법이 더 좋은 압축율을 보이었다.
개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.
최근 1인 미디어의 확장과 맞물려 개인 차원에서의 영상편집이 활성화되고 있다. 인기 영상강의를 위주로 초보자들도 쉽게 접근할 수 있으나 여전히 많은 사람들이 영상제작을 어려워하고 있다. 특히 밝기, 대비 및 색 보정에서 어려움을 많이 겪는다. 전문적인 영상편집 툴의 경우 자동 보정 기능을 제공하고 있으나 파이널 컷의 경우 Apple 사의 맥 디바이스 환경을 구축해야 하는 문제, Adobe사 프로그램의 경우 완전 자동 기능 부재 및 무거운 연산처리 과정 및 유료화로 인한 접근성 저하, 기타 프로그램들의 경우 설치 접근성이 낮다는 단점이 있었다. 이에 본 연구에서는 클라우드 기반의 쉽고 빠른, 접근성을 높인 자동 영상보정 서비스를 제시하려 한다. 최종 단계의 클라우드 서비스에서는 흔들림 보정, 색 보정, 대비 보정, 명암 보정의 향상 기능과 컷 단위 인식, 신단위 인식, 객체 단위 인식의 서비스를 제공해야 한다는 결론에 도출하였다. 본 논문에서는 연구의 시작으로 클라우드 서비스 구축 및 OpenCV를 활용하여 프레임 별 영상 향상 알고리즘 구현을 시행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.