• Title/Summary/Keyword: 인식 단위

Search Result 1,048, Processing Time 0.027 seconds

Segmental Corrective Training for HMM Parameter Estimation in Speech Recognition (음성인식 시스템의 HMM 파라메터 추정을 위한 분절단위 교정 학습)

  • 김회린;이황수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.2E
    • /
    • pp.5-11
    • /
    • 1993
  • 본 논문에서 HMM 파라메터 추정을 위해 분절단위 정보를 이용하는 수정된 교정학습방법을 제안한다. 수정된 교정학습방법은 기존의 교정학습 방법에서 사용하는 전향·후향 알고리즘 대신에 분절단위 K-means 알고리즘을 사용하여 HMM 파라메터를 교정한다. 이 방식은 분절단위 K-means 알고리즘이 음성신호내의 공통의 통계적 특성을 가지는 상태단위 정보를 강조한다는 사실을 이용하였다. 화자종속 음소 및 단어인식 실험에서 제안된 알고리즘이 기존의 교정학습 방법보다 적은 계산량으로도 향상된 인식률을 보여주었다. 이것은 HMM 교정학습에서 상태다누이 정보가 중요함을 보여준다.

  • PDF

A Study on VCCV Segmentation in Unrestricted Word Recognition System (무제한 단어인식 시스템을 위한 VCCV분할에 관한 연구)

  • Youn Jeh-Seon;Chung Kwang-Woo;Hong Kwang-Seok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.103-106
    • /
    • 2000
  • 무제한 인식 시스템을 구현하기 위해서는 적절한 인식단위, 훈련 데이터 베이스의 확보, 인식단위의 분할, 인식 알고리즘과 같은 문제점을 모두 해결하여야 한다. 따라서 본 논문에서는 무제한 음성인식 시스템의 인식의 기본 단위로 모음의 안정구간을 검출하여 분할하는 CV(Consonant-Vowel), VC(Vowel-Consonant), VC CV(Vowel-Consonant-Consonant-Vowel)단위와 분할 파라미터를 제안하고, 분할 실험을 통해 그 유효성을 확인하고자 한다.

  • PDF

An Implementation of the Vocabulary Independent Speech Recognition System Using VCCV Unit (VCCV단위를 이용한 어휘독립 음성인식 시스템의 구현)

  • 윤재선;홍광석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.160-166
    • /
    • 2002
  • In this paper, we implement a new vocabulary-independent speech recognition system that uses CV, VCCV, VC recognition unit. Since these recognition units are extracted in the trowel region of syllable, the segmentation is easy and robust. And in the case of not existing VCCV unit, the units are replaced by combining VC and CV semi-syllable model. Clustering of vowel group and applying combination rule to the substitution model in the case of not existing of VCCV model lead to 5.2% recognition performance improvement from 90.4% (Model A) to 95.6% (Model C) in the first candidate. The recognition results that is 98.8% recognition rate in the second candidate confirm the effectiveness of the proposed method.

Recognition of Handwritten Numeral Strings Using Touching Numeral Pair Recognizer (접촉 숫자쌍 인식기를 이용한 필기 숫자열 인식)

  • 최순만;오일석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.344-346
    • /
    • 2000
  • 임의 길이 숫자열을 인식하기 위해서는 우선 숫자열 영상을 인식기가 다룰 수 있는 형태로 변환해야 한다. 만일, 사용하는 인식기가 낱자 단위 인식기라면 낱자 단위로 분할하여야 하는데, 두자 이상의 숫자들이 접촉한 경우 정확한 분할이 어렵다. 이 논문은 이러한 문제를 해결하기 위하여 접촉 숫자쌍을 분할하지 않고 통째로 인식하는 방법을 사용한다. 필기 숫자열을 인식하기 위해 제안한 방법은 두 개의 인식기를 이용한다. 숫자열에서 분할된 패턴이 낱자인 경우 낱자 인시기가, 접촉 숫자쌍일 경우 접촉 숫자쌍 인식기가 인식한다. NIST 데이터베이스에 대한 실험 결과 2~10개의 숫자를 포함한 숫자열에 대하여 83.76%의 숫자열 인식률을 보여 접촉 숫자열 패턴을 낱자 단위로 분할하지 않고도 효과적으로 인식할 수 있음을 확인할 수 있었다.

  • PDF

A Statistical Model for Korean Text Segmentation Using Syllable-Level Bigrams (음절단위 bigram정보를 이용한 한국어 단어인식모델)

  • Shin, Joong-Ho;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.255-260
    • /
    • 1997
  • 일반적으로 한국어는 띄어쓰기 단위인 어절이 형태소 분석의 입력 단위로 쓰이고 있다. 그러나 실제 영역(real domain)에서 사용되는 텍스트에서는 띄어쓰기 오류와 같은 비문법적인 형태도 빈번히 쓰이고 있다. 따라서 형태소 분석 과정에 선행하여 적합한 형태소 분석의 단위를 인식하는 과정이 이루어져야 한다. 본 연구에서는 한국어의 음절 특성을 이용한 형태소분석을 위한 어절 인식 방법을 제안한다. 제안하는 방법은 사전에 기반하지 않고 원형코퍼스(raw corpus)로부터의 필요한 음절 정보 및 어휘정보를 추출하는 방법을 취하므로 오류가 포함된 문장에 대하여 견고한 분석이 가능하고 많은 시간과 노력이 요구되는 사전구축 및 관리 작업을 필요로 하지 않는다는 장점이 있다. 한국어 어절 인식을 위하여 본 논문에서는 세가지 확률 모텔과 동적 프로그래밍에 기반한 인식 알고리즘을 제안한다. 제안하는 모델들을 띄어쓰기 오류문제와 한국어 복합명사 분석 문제에 적용하여 실험한 결과 82-85%정도의 인식 정확도를 보였다.

  • PDF

Improving A Text Independent Speaker Identification System By Frame Level Likelihood Normalization (프레임단위유사도정규화를 이용한 문맥독립화자식별시스템의 성능 향상)

  • 김민정;석수영;정현열;정호열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.487-490
    • /
    • 2001
  • 본 논문에서는 기존의 Caussian Mixture Model을 이용한 실시간문맥독립화자인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 나타내는 유사도정규화 ( Likelihood Normalization )방법을 화자식별시스템에 적용하여 시스템을 구현하였으며, 인식실험한 결과에 대해 보고한다. 시스템은 화자모델생성단과 화자식별단으로 구성하였으며, 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하여 화자모델을 작성하였으며. GMM의 파라미터를 최적화하기 위하여 MLE(Maximum Likelihood Estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum Likelihood)을 이용하여 프레임단위로 유사도를 계산하였다. 계산된 유사도는 유사도 정규화 과정을 거쳐 스코어( SC)로 표현하였으며, 가장 높은 스코어를 가지는 화자를 인식화자로 결정한다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며. 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을수 있었다.

  • PDF

A Method of Scaling Time-Delay Neural Networks for Korean Allophone Recognition (한국어 변이음 인식을 위한 시간지연 신경망의 확장방법)

  • 김수일
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.229-234
    • /
    • 1994
  • 본 논문에서는 한국어 변이음을 인식하기 위한 시간지연 신경망의 확장 방법을 살펴보고 한국어 파열음의 벼이음을 인식하는 실험을 통해 각 확장 방법의 인식 성능을 비교한다. 먼저 변이음을 연속음성인식의 인식단위로 사용하기 위하여 한 음소이모든 변이음을 고려하면서 서로 유사한 변이음을 통합 분류하여 3개의 변이음 군으로 나눈다. 한국어 파열음에 대한 인식 실험결과, 음향 음성학적인 특성에 따라 나누어진 trbah 시간지연 신경망들을 모듈 별로 학습한 후, 계층적으로 통합하여 전체적인 시간지연 신경망을 구성하는 방법이 가장 좋은 성능을 나타내었다. 또한, 변이음 단위 인식이 음소 단위 인식에서 문제가 되는 조음 결합 현상을 해결할 수 있음을 확인하였고, 변이음 인식의 결과인 변이음 열이 제공하는 부가적인 정보를 음운파상에 이용하는 방법에 대해 고찰하였다.

  • PDF

A Study on Connected Word Recognition for the Implementation of a Real-Time Voice Dialing System (실시간 음성 다이얼링 시스템 구현을 위한 연결어 인식에 관한 연구)

  • 김천영;양진우;유형근;이형준;홍진우;이강성;안태옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-25
    • /
    • 1993
  • 본 논문은 음성 다이얼링 시스템을 구현하기 위한 연결어 인식에 관한 연구이다. 적용된 인식 알고리즘은 기준패턴을 생성할 때 DMS 모델을 이용한 One-stage DMS/DP 알고리즘이고, 인식 대상어는 광운대학교 부서명 150 단어이다. 연결어 인식을 실시간으로 처리하기 위한 방법으로써 본 논문에서는 음절과 단어 단위의 DMS 템플리트를 구성하여 실험하였고 이 실험결과로부터 실시간과 인식률을 고려한 최적의 인식은 단어단위 템플리트에서 20 구간의 DMS 템플리트를 구성하여 실험하였고 이 실험결과로부터 실시간과 인식률을 고려한 최적의 인식은 단어단위 템플리트에서 20구간의 DMS 모델을 적용하였을 때 수행되었고, 이때 다중화자종속과 화자독립의 인식률은 각각 97.2%, 86.8%이다. 실험된 결과를 이용하여 음성 다이얼링 모델 시스템을 DSP 전용칩인 TMS320C30 프로세서를 내장한 DSP 보오드, 486 PC와 DIAL 모뎀을 이용해서 구현하였고, 전체 다이얼링 시간은 약 7~14초가 소요되었다.

  • PDF

An Efficient Method to Extract Units of Manchu Characters (만주 글자의 단위를 추출하는 효율적인 방법)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.617-619
    • /
    • 2021
  • Since Manchu characters are written vertically and are connected without spaces within a word, a preprocessing process is required to separate the character area and the units that make up the characters before recognizing the characters. In this paper, we describe a preprocessing method that extracts the character area and cuts off the unit of the character. Unlike existing research that presupposes a method of recognizing each word or character unit, or recognizing the remaining part after removing the stem of a continuous character, this method cuts the character into each recognizable unit. It can be applied to the method of recognizing letters by combining the units. Through an experiment, the effectiveness of this method was verified.

  • PDF

Definition and Evaluation of Korean Phone-Like Units using Hidden Markov Network (HM-Net을 이용한 한국어 유사음소 단위의 재 정의와 평가)

  • Lim Young-Chun;Oh Se-Jin;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.183-186
    • /
    • 2002
  • 최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.

  • PDF