• 제목/요약/키워드: 인식 단위

검색결과 1,048건 처리시간 0.022초

의사형태소 단위 대어휘 연속 음성 인식기 개발 (Development of a Pseudomorpheme-Based Large Vocabulary Continuous Speech Recognizer)

  • 권오욱
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.320-327
    • /
    • 1998
  • 대어휘 연속음성인식을 목표로 개발한 의사형태소 단위의 인식기를 기술하였다. 먼저 의상형태소를 정의하고, 의사형태소 태거를 간단히 기술하며, 의사형태소의 병합에 의한 인식단위 결정방법, 의사형태소 단위 인식기에서 특히 고려되어야 할 음향모델링, 품사 정보를 이용한 언어모델 및 어절규칙의 적용 방안, 의사형태소 단위 인식을 위한 새로운 탐색기 구조를 기술한다. 약 5,500 어절의 인식어휘를 갖는 여행계획 영역의 대화체 연속음성 데이터베이스를 이용하여 초벌 인식실험을 한 결과, 의사형태소 단위의 인식기의 단어인식률은 66.4%, 어절인식률은 60.0%를 나타내었다.

  • PDF

한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론 (Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology)

  • 임솔이;이원준;이근배;김윤수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

한국어 분절음 인식을 위한 인식 단위에 대한 연구 (A Study on Recognition Units for Korean Speech Recognition)

  • 황영수;송민석
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.47-52
    • /
    • 2000
  • 본 연구는 한국어 분절음 인식을 위한 인식단위 설정에 대한 연구이다. 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식단위 설정과 현대어 발음에 기초한 인식단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였다. 또한 인식단위의 설정에 있어서 독려된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(biphone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다. 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.

  • PDF

한국어 인식을 위한 인식 단위와 학습 데이터 분류 방법에 대한 연구 (A Study on Recognition Units and Methods to Align Training Data for Korean Speech Recognition))

  • 황영수
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.40-45
    • /
    • 2003
  • 본 연구는 한국어 분절음 인식을 위한 인식 단위 설정과 학습시 학습 데이터 분할 방법에 대한 연구이다 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화와 학습시 학습 데이터 분할 방법에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식 단위 설정과 현대어 발음에 기초한 인식 단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였으며, 학습 데이터 분할 방법에 따른 인식 결과는 손으로 분할한 방법이 자동 분할 방법보다 약 2-3%의 인식 향상을 보였다. 또한 인식 단위의 설정에 있어서 독립된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(bipbone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.

  • PDF

한국어 어휘 인식을 위한 혼합형 음성 인식 단위 (Monophone and Biphone Compuond Unit for Korean Vocabulary Speech Recognition)

  • 이기정;이상운;홍재근
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권6호
    • /
    • pp.867-874
    • /
    • 2001
  • 본 논문에서는 한국어의 발음 특성을 고려하여 인식시간 단축과 동시에 조음현상을 반영할 수 있는 인식단위 표현법을 제안하였다. 제안한 인식단위는 단음소(monophone)와 바이폰(biphone)의 혼합형으로서, 단음소 단위는 안정적인 특성을 나타내는 모음에 적용되고 바이폰 단위는 인접한 모음에 의해 변하는 자음에 적용된다. PBW455 데이터베이스에 대한 단어인식 실험에서 혼합형 단위표현법은 트라이폰 단위에 비해 비슷한 인식률을 나타내면서 57%의 인식시간 단축효과를 나타냈고, 음절 단위에 비해 향상된 인식률과 비슷한 인식시간을 나타내었다. 또한 트라이폰 및 음절 단위보다 적은 모델 수를 가져 메모리 양을 줄일 수 있었다.

  • PDF

CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구 (A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm)

  • 원종문;이정숙;김순협
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF

인식 단위로서의 한국어 음절에 대한 연구 (A Study on the Korean Syllable As Recognition Unit)

  • 김유진;김회린;정재호
    • 한국음향학회지
    • /
    • 제16권3호
    • /
    • pp.64-72
    • /
    • 1997
  • 본 논문에서는 한국어 대용량 어휘 인식 시스템에 적합한 인식 단위에 대하여 연구 및 실험하였다. 특히 현재 인식 시스템의 인식 단위로 주로 사용되는 음소와 한국어의 특징을 잘 나타내는 음절을 선택하고, 인식 실험을 통해 음절이 한국어 인식 시스템의 인식 단위로서 적합한가를 음소와 비교하였다. 객관적인 비교 인식 실험 결과를 제시하기 위하여 동일한 남성 화자의 음성 데이터를 수집하고, 수작업 음소 경계 및 레이블링 과정을 거친 음성 데이터 베이스를 구축하였다. 또한 각 인식 단위에 동일한 HMM 기반의 훈련 및 인식 알고리즘을 적용하기 위해 Entropic사의 HTK (HMM Tool Kit) 2.0을 사용하였다. 각 인식 단위의 훈련을 위해 5상태 3출력, 8상태 6출력 HMM 모델의 연속 HMM (Continuous HMM)을 적용하였고, PBW 3회분, POW 1회분을 훈련에 사용하고 PBW 1회분을 각 인식 단위로서 인식하는 화자 종속 단어 인식 실험을 구성하였다. 실험 결과 8상태 6출력 모델을 사용한 경우 음소 단위는 95.65%, 음절 단위는 94.41%의 인식률을 나타내었다. 한편 인식 속도에서는 음절이 음소보다 약 25% 빠른 것으로 나타났다.

  • PDF

반음절 단위 HMM을 이용한 연속 숫자 음성인식 (Continuous Digits Speech Recognition using Semisyllable Unit HMM)

  • 윤재선;홍광석
    • 한국음향학회지
    • /
    • 제17권5호
    • /
    • pp.73-78
    • /
    • 1998
  • 본 논문에서는 조음 효과에 대처할 수 있는 새로운 음성인식 단위로 반음절, 반음절 +반음절 단위 HMM을 제안하여 연속 숫자 음성인식을 하였다. 반음절 단위는 무음과 안정 구간으로, 반음절+반음절 단위는 안정, 천이, 안정구간으로 구성되어 있고, 음성인식 단위 분 할시 비교적 스펙트럼의 변화가 안정한 모음구간에서 분할하므로 분할 위치가 약간 변하여 도 인식성능에는 큰 영향을 주지 않게 된다. 또한, 제안된 반음절, 반음절+반음절 인식단위 는 그 패턴 안에 다음 숫자열의 정보를 포함하고 있기 때문에 모든 HMM 패턴들과 비교하 는 것이 아니라, 다음 숫자열의 정보를 포함한 HMM 패턴들과 비교한다. 인식실험결과 제 안된 방법이 효율적임을 확인하였다.

  • PDF

의사 형태소 단위의 연속 음성 인식 (Pseudo-Morpheme-Based Continuous Speech Recognition)

  • 이경님
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.309-314
    • /
    • 1998
  • 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소를 정의하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 37개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다. 각 음성신호 구간에 해당되는 의사 형태소가 인식되면 언어모델을 사용하여 구성된 의사 형태소 단위의 상위 5개 문장을 기반으로 시작 시점과 끝 시점, 그리고 확률 값을 가진 의사 형태소 격자를 생성하고, 음성 사전으로부터 태그 정보를 격자에 추가하였다. Tree-trellis 탐색 알고리즘 기반에 의사 형태소 접속정보를 사용하여 음성언어 형태소 해석을 수행하였다. 본 논문에서 제안한 의사 형태소를 문장의디코딩 단위로 사용하였을 경우, 사전의 크기면에서 어절 기반의 사전 entry 수를 현저히 줄일 수 있었으며, 문장 인식률면에서 문자기반 형태소 단위보다 약 20% 이상의 인식률 향상을 얻을 수있었다. 뿐만 아니라 형태소 해석을 수행하기 위해 별도의 분석과정 없이 입력값으로 사용되며, 전반적으로 문자을 구성하는 디코딩 수를 안정화 시킬 수 있었다. 이 결과값은 상위레벨 언어처리를 위한 입력?으로 사용될 뿐만 아니라, 언어 정보를 이용한 후처리 과정을 거쳐 더 나은 인식률 향상을 꾀할 수 있다.

  • PDF

정규표현을 이용한 연속 및 불연속 복합단위 인식기 (An Interrupted and Uninterrupted Compound Unit Recognizer using Regular Expression)

  • 여상화;서정연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.487-490
    • /
    • 2003
  • 기계번역 시스템에서 복합단위 처리는 원문의 분석 부담을 줄이고 조합적으로 대역문의 의미를 생성하지 못하는 원문의 처리를 위해 필수적이다. 본 논문에서는 정규표현(Regular Expression)을 이용하여 영어의 연속(Non-Interrupted) 및 불연속(Interrupted) 복합 단위를 인식하는 복합단위 인식기를 제안한다. 제안된 방법은, 기존에 trie 와 같은 index 의 갱신 과정이 불필요하므로, 다수의 작업자에 의해 복합단위 사전을 동시에 구축하는 경우에, 한 작업자의 결과가 실시간으로 다른 작업자의 작업에 반영되는 장점이 있으며, 복합단위 인식에 있어 정규 표현을 이용함으로써 복합단위 인식기의 성능을 선언적으로 향상시킬 수 있다. 번역 실행시의 고속 탐색을 위해서는 전체 복합단위로부터 FSA(finite State Automata) 를 자동으로 구축하여 빠른 속도로 인식 가능하도록 하였다.

  • PDF