한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.320-327
/
1998
대어휘 연속음성인식을 목표로 개발한 의사형태소 단위의 인식기를 기술하였다. 먼저 의상형태소를 정의하고, 의사형태소 태거를 간단히 기술하며, 의사형태소의 병합에 의한 인식단위 결정방법, 의사형태소 단위 인식기에서 특히 고려되어야 할 음향모델링, 품사 정보를 이용한 언어모델 및 어절규칙의 적용 방안, 의사형태소 단위 인식을 위한 새로운 탐색기 구조를 기술한다. 약 5,500 어절의 인식어휘를 갖는 여행계획 영역의 대화체 연속음성 데이터베이스를 이용하여 초벌 인식실험을 한 결과, 의사형태소 단위의 인식기의 단어인식률은 66.4%, 어절인식률은 60.0%를 나타내었다.
이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.
본 연구는 한국어 분절음 인식을 위한 인식단위 설정에 대한 연구이다. 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식단위 설정과 현대어 발음에 기초한 인식단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였다. 또한 인식단위의 설정에 있어서 독려된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(biphone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다. 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.
본 연구는 한국어 분절음 인식을 위한 인식 단위 설정과 학습시 학습 데이터 분할 방법에 대한 연구이다 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화와 학습시 학습 데이터 분할 방법에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식 단위 설정과 현대어 발음에 기초한 인식 단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였으며, 학습 데이터 분할 방법에 따른 인식 결과는 손으로 분할한 방법이 자동 분할 방법보다 약 2-3%의 인식 향상을 보였다. 또한 인식 단위의 설정에 있어서 독립된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(bipbone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.
본 논문에서는 한국어의 발음 특성을 고려하여 인식시간 단축과 동시에 조음현상을 반영할 수 있는 인식단위 표현법을 제안하였다. 제안한 인식단위는 단음소(monophone)와 바이폰(biphone)의 혼합형으로서, 단음소 단위는 안정적인 특성을 나타내는 모음에 적용되고 바이폰 단위는 인접한 모음에 의해 변하는 자음에 적용된다. PBW455 데이터베이스에 대한 단어인식 실험에서 혼합형 단위표현법은 트라이폰 단위에 비해 비슷한 인식률을 나타내면서 57%의 인식시간 단축효과를 나타냈고, 음절 단위에 비해 향상된 인식률과 비슷한 인식시간을 나타내었다. 또한 트라이폰 및 음절 단위보다 적은 모델 수를 가져 메모리 양을 줄일 수 있었다.
본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.
본 논문에서는 한국어 대용량 어휘 인식 시스템에 적합한 인식 단위에 대하여 연구 및 실험하였다. 특히 현재 인식 시스템의 인식 단위로 주로 사용되는 음소와 한국어의 특징을 잘 나타내는 음절을 선택하고, 인식 실험을 통해 음절이 한국어 인식 시스템의 인식 단위로서 적합한가를 음소와 비교하였다. 객관적인 비교 인식 실험 결과를 제시하기 위하여 동일한 남성 화자의 음성 데이터를 수집하고, 수작업 음소 경계 및 레이블링 과정을 거친 음성 데이터 베이스를 구축하였다. 또한 각 인식 단위에 동일한 HMM 기반의 훈련 및 인식 알고리즘을 적용하기 위해 Entropic사의 HTK (HMM Tool Kit) 2.0을 사용하였다. 각 인식 단위의 훈련을 위해 5상태 3출력, 8상태 6출력 HMM 모델의 연속 HMM (Continuous HMM)을 적용하였고, PBW 3회분, POW 1회분을 훈련에 사용하고 PBW 1회분을 각 인식 단위로서 인식하는 화자 종속 단어 인식 실험을 구성하였다. 실험 결과 8상태 6출력 모델을 사용한 경우 음소 단위는 95.65%, 음절 단위는 94.41%의 인식률을 나타내었다. 한편 인식 속도에서는 음절이 음소보다 약 25% 빠른 것으로 나타났다.
본 논문에서는 조음 효과에 대처할 수 있는 새로운 음성인식 단위로 반음절, 반음절 +반음절 단위 HMM을 제안하여 연속 숫자 음성인식을 하였다. 반음절 단위는 무음과 안정 구간으로, 반음절+반음절 단위는 안정, 천이, 안정구간으로 구성되어 있고, 음성인식 단위 분 할시 비교적 스펙트럼의 변화가 안정한 모음구간에서 분할하므로 분할 위치가 약간 변하여 도 인식성능에는 큰 영향을 주지 않게 된다. 또한, 제안된 반음절, 반음절+반음절 인식단위 는 그 패턴 안에 다음 숫자열의 정보를 포함하고 있기 때문에 모든 HMM 패턴들과 비교하 는 것이 아니라, 다음 숫자열의 정보를 포함한 HMM 패턴들과 비교한다. 인식실험결과 제 안된 방법이 효율적임을 확인하였다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.309-314
/
1998
언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소를 정의하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 37개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다. 각 음성신호 구간에 해당되는 의사 형태소가 인식되면 언어모델을 사용하여 구성된 의사 형태소 단위의 상위 5개 문장을 기반으로 시작 시점과 끝 시점, 그리고 확률 값을 가진 의사 형태소 격자를 생성하고, 음성 사전으로부터 태그 정보를 격자에 추가하였다. Tree-trellis 탐색 알고리즘 기반에 의사 형태소 접속정보를 사용하여 음성언어 형태소 해석을 수행하였다. 본 논문에서 제안한 의사 형태소를 문장의디코딩 단위로 사용하였을 경우, 사전의 크기면에서 어절 기반의 사전 entry 수를 현저히 줄일 수 있었으며, 문장 인식률면에서 문자기반 형태소 단위보다 약 20% 이상의 인식률 향상을 얻을 수있었다. 뿐만 아니라 형태소 해석을 수행하기 위해 별도의 분석과정 없이 입력값으로 사용되며, 전반적으로 문자을 구성하는 디코딩 수를 안정화 시킬 수 있었다. 이 결과값은 상위레벨 언어처리를 위한 입력?으로 사용될 뿐만 아니라, 언어 정보를 이용한 후처리 과정을 거쳐 더 나은 인식률 향상을 꾀할 수 있다.
기계번역 시스템에서 복합단위 처리는 원문의 분석 부담을 줄이고 조합적으로 대역문의 의미를 생성하지 못하는 원문의 처리를 위해 필수적이다. 본 논문에서는 정규표현(Regular Expression)을 이용하여 영어의 연속(Non-Interrupted) 및 불연속(Interrupted) 복합 단위를 인식하는 복합단위 인식기를 제안한다. 제안된 방법은, 기존에 trie 와 같은 index 의 갱신 과정이 불필요하므로, 다수의 작업자에 의해 복합단위 사전을 동시에 구축하는 경우에, 한 작업자의 결과가 실시간으로 다른 작업자의 작업에 반영되는 장점이 있으며, 복합단위 인식에 있어 정규 표현을 이용함으로써 복합단위 인식기의 성능을 선언적으로 향상시킬 수 있다. 번역 실행시의 고속 탐색을 위해서는 전체 복합단위로부터 FSA(finite State Automata) 를 자동으로 구축하여 빠른 속도로 인식 가능하도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.