• 제목/요약/키워드: 인식 개선

검색결과 5,318건 처리시간 0.032초

스펙트럴 차원의 잡음처리를 이용한 음성인식 (Speech Recognition Using Noise Processing in Spectral Dimension)

  • 이광석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.738-741
    • /
    • 2009
  • 본 연구는 잡음을 포함한 음성 환경에서의 음성인식을 개선방안에 관한 것이다. 우리는 음성인식에서 잡음 섞인 음성으로부터 얻은 스펙트럴 envelope에서 곡들의 스펙트럴 subtraction 및 복원이 보다 더 효과적임을 알 수 있었다. 본 연구에서, 평균화된 스펙트럴 envelope은 모음 스펙트럼으로부터 추출하여 곡들의 강조에 사용하였다. 낮은 주파수 영역에서의 모음 스펙트럴 정보는 강조되어지고 자음으로부터 얻은 스펙트럼은 변하지 않는다. 시뮬레이션으로 살펴보면, 강조계수는 켑스트럴 영역에서 변한다. 이 방법으로 잡음석인 숫자음성 인식에서 적용하였으며 인식결과가 개선됨을 알 수 있었다.

  • PDF

개선된 RBF 신경망을 이용한 여권 인식 (The Passport Recognition by Using Enhanced RBF Neural Network)

  • 류재욱;김태경;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.529-534
    • /
    • 2002
  • 출입 관리는 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하고 출입국자를 관리하기 위하여 행하여진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에게 불편이 따르고 또한 출입국 부적격자에 대한 정확한 검색이 불분명하여 체계적으로 관리하기가 어렵다. 이러한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 본 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하였다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 신경망을 제안하여 여권 인식에 적용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

디블러를 고려한 초해상화 모델 기반 차량 번호판 인식 성능 개선 (Improving License Plate Recognition Based on a Deblurring Super-Resolution Model)

  • 이여진;문용혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.473-475
    • /
    • 2023
  • 자동차 번호판 인식은 영상 내 검출한 차량의 번호판의 문자열을 인식하여 차량을 식별하고 추적하는 기술로 주변 환경에 의한 잡음, 왜곡과 차량의 움직임으로 발생한 흐림, 영상 입력 장치와의 물리적 거리 등에 강인해야 한다. 본 논문에서는 차량 움직임으로 발생한 흐림이 있는 저해상도 영상에 대한 번호판 인식 성능의 향상을 위해 디블러링 모델과 초해상화 모델을 이용한 영상 복원 방법을 제안한다. 실험을 통해 디블러링 모델과 초해상화 모델을 결합하여 흐림이 있는 저해상도 국내 번호판 영상에서의 인식 성능을 개선하였다.

무선 센서 네트워크를 위한 위치인식 알고리즘 성능개선 및 평가 (Performance Evaluation of Improved Localization Algorithm for Wireless Sensor Network)

  • 한왕원;이승제;변영택;김영만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.800-803
    • /
    • 2008
  • 언제 어디서나 사람이나 사물과 같은 객체의 위치를 인식하고 이를 기반으로 유용한 서비스를 제공하는 유비쿼터스 위치기반 서비스가 중요한 응용 서비스로 대두되고 있다. 그러나 현재 무선 센서네트워크를 구성하는 노드들의 위치는 매우 유용한 정보로서 수많은 서비스에서 사용될 수 있기 때문에 다양한 형태의 위치인식 알고리즘이 고안되었다. 이러한 위치인식 알고리즘에는 Gradient, MLE[1], MDS[2], dwMDS[3]등이 있다. 본 논문에서는 기존의 알고리즘에 대해 간략히 설명하고, 기존 알고리즘성능을 개선하기 위한 두 가지 방법을 제안한다. 그리고 제안한 방법의 성능을 증명하기 위해 시뮬레이션 모듈을 구현하고 시뮬레이션 결과를 바탕으로 각 위치인식 알고리즘의 성능을 비교 평가한다.

한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론 (Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology)

  • 임솔이;이원준;이근배;김윤수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

심한 소음환경에서 언어장애인 음성 인식률 향상을 위한 단어선정 방법 및 장치 개선에 관한 연구 (A Study on Word Selection Method and Device Improvement for Improving Speech Recognition Rate of Speech-Language-impaired in Severe Noise Environment)

  • 양기웅;이형근
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.555-567
    • /
    • 2019
  • 언어장애인, 언어 사용이 불편한 분들의 경우 조금의 잡음 환경에도 음성인식률이 저하되어 사회 생활시 어려움을 겪게 된다. 언어 사용 시 불편함을 장치로 개선시킴과 동시에, 언어 장애인의 발음 특성을 고려하여 단어 선정 시 자체 개선한 단어 선정 방법을 사용하여 280개 단어를 선정하였다. 실험에 사용된 MEMS 개발 장치는 재질, 유도선 종류, 길이, 방향을 고려하여 제작되었으며 잘못된 발음으로 인한 음성과 심한 소음에서 음성 인식률 향상을 위하여 개발된 MEMS 장치와 개발된 단어 선정 방법을 사용하여 개선시켰다. 개선 방법으론 새로운 단어 선정 방법과 mems 장치를 개선하여 진행하였으며 결과를 포함하였다.

음성 인식률 개선방법에 관한 연구 (A Study on Improved Method of Voice Recognition Rate)

  • 김영포;이한영
    • 한국전자통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.77-83
    • /
    • 2013
  • 본 논문에서는 음성 인식률 개선에 관한 방법을 제시하고 연구하였다. 기존의 음성 검출 방법 중 많이 이용되고 있는 HMM(Hidden Markov Model) 알고리즘을 이용하여서 음성을 검출하였다. 실험은 음성 검출과 음성 인식의 두 가지 방법으로 진행하였다. 음성 검출은 음성의 단위로 영교차율을 구하여 데이터의 유무를 판별하였다. 음성 인식은 음성의 형상의 패턴을 분석한 후 학습된 패턴과 비교 하는 형식으로 분석하였다. 실험 결과, 제안된 음성 형상의 패턴인식 이용한 알고리즘은 92%의 음성 인식률을 얻어 80%의 기존 HMM 알고리즘에 비해서 약 12%의 향상된 인식률을 얻을 수 있었다.

신경회로망과 기억이론에 기반한 한글영상 인식과 복원 (The Hangeul image's recognition and restoration based on Neural Network and Memory Theory)

  • 장재혁;박중양;박재홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.17-27
    • /
    • 2005
  • 본 논문에서는 문자인식과 복원을 위한 신경회로망 시스템을 제안한다. 제안하는 시스템은 인식부와 연상부로 구성되었다. 인식부에서는 ART 신경회로망의 인식성능을 개선하기 위해 불필요한 하향틀의 생성과 변화를 제한하여 효과적인 패턴인식이 가능한 모델을 제안하였다. 또한, 한글의 구조적인 특징을 능동적으로 적용할 수 있게 구성된 위치특징 추출 알고리즘을 적용하였다. 연상부에서는 Hopfield 신경회로망으로, 입력된 이미지 패턴의 복원이 가능한 모델을 구성하였다. 제안하는 시스템은 그 성능을 확인하기 위해 각 부분별 실험을 하였다. 그 결과 인식율이 개선되고 복원이 가능함을 보였다.

  • PDF

바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템 (Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2010
  • 어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.

개선된 PPHT를 이용한 선분 인식 알고리즘 (Line Segment Detection Algorithm Using Improved PPHT)

  • 이찬호;문지현;응웬 두이 풍
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.82-88
    • /
    • 2016
  • 영상 인식에서 널리 이용되는 PPHT(Progressive Probability Hough Transform)는 직선을 정확하게 인식하는 우수한 알고리즘이나 원본 영상이 선명하지 않거나 복잡하여 잡음 성분이 많은 경우 인식률이 감소하는 문제가 있다. 이러한 문제를 해결하기 위해 잡음에 강하고 손상된 가장자리 패턴을 복구하며 직선을 인식하는 개선된 PPHT 방식을 제안한다. 제안하는 알고리즘은 픽셀 단위로 직선을 추적하고 검증하여 선분을 검출하는 방식으로 잡음의 영향을 최소화하고 손상된 가장자리 패턴을 일정 범위 내에서 복구하여 인식률을 증가시켰다. 제안한 알고리즘을 차선 인식에 적용하여 직선의 오인식률을 30% 이상 감소시키고 선분 인식률이 15%까지 증가함을 확인하였다.