• 제목/요약/키워드: 인식률 향상

검색결과 911건 처리시간 0.029초

CHMM을 이용한 발매기 명령어의 음성인식에 관한 연구 (A Study on the Speech Recognition for Commands of Ticketing Machine using CHMM)

  • 김범승;김순협
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.285-290
    • /
    • 2009
  • 논문에서는 연속HMM(Continuos Hidden Markov Model)을 이용하여 실시간으로 발매기 명령어(314개 역명)를 인식 할 수 있도록 음성인식 시스템을 구현하였다. 특징 벡터로 39 MFCC를 사용하였으며, 인식률 향상을 위하여 895개의 tied-state 트라이폰 음소 모델을 구성하였다. 시스템 성능 평가 결과 다중 화자 종속 인식률은 99.24%, 다중화자 독립 인식률은 98.02%의 인식률을 나타내었으며, 실제 노이즈가 있는 환경에서 다중 화자 독립 실험의 경우 93.91%의 인식률을 나타내었다.

음성인식률 향상을 위한 잡음 제거

  • 황동환
    • 전기의세계
    • /
    • 제51권12호
    • /
    • pp.22-25
    • /
    • 2002
  • 많은 연구를 통해 음성 인식은 잡음이 존재하지 않는 환경에서는 매우 높은 인식률을 보이고 있으며 실제로 여러 분야에서 응용되고 있다 하지만 여러 잡음이 존재하는 환경에서는 그 성능이 급격하게 저하되어 잡음 에 둔감한 인식기와 잡음 제거가 필수적이다. 본 내용에서는 독립 요소 기법에 기반 한 잡음 제거 기법을 소개하고 이를 칩으로 구현하고 그 결과를 고찰해 보겠다.

  • PDF

Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구 (A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method)

  • 김성일;정승용;구자윤;임윤석;구선근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF

유전자 알고리듬을 이용한 DTW 참조패턴 생성에 관한 연구 (A Study on DTW Reference Pattern Creation Using Genetic Algorithm)

  • 서광석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.385-388
    • /
    • 1998
  • DTW를 이용한 음성인식에서는 참조패턴이 인식률에 절대적인 영향을 미치므로 가장 적합한 참조패턴의 생성이 중요한 요인으로 작용한다. 그러므로 인식률 향상을 위해 여러개의 참조패턴을 사용하는 방법이 있다. 그러나 이러한 방법은 게산량의 과다 및 사용 메모리의 증가 등이 단점으로 지적되고 있다. 따라서 본 논문에서는 참조패턴의 수를 줄이면서 높은 인식률을 얻기 위해 유전자 알고리듬을 이용하여 보다 우수한 참조패턴을 생성하여 음성인식에 적용하였다. 본 논문에서는 참조패턴 생성을 위하여 훈련에 참가한 자료를 서로 비교하여 DTW 거리값의 누적값이 최소가 되는 데이터를 선정하는 방법, 유전자 알고리듬을 이용한 방법으로 선정하는 방법으로 나누어 실험을 했고, 그 결과 누적값의 최소값을 이용하였을 경우 98.33%의 인식률을 얻을 수 있었던 반면에 유전자 알고리듬을 사용하였을 경우 100%의 화자종속 인식률을 얻을 수 있었다.

  • PDF

예측형과 분류형 신경망을 이용한 한국어 숫자음 인식 (Recognition of Korean Isolated Digits Using Classification and Prediction Neural Networks)

  • 한학용;김주성;고시영;허강인;안점영
    • 한국통신학회논문지
    • /
    • 제24권12B호
    • /
    • pp.2447-2454
    • /
    • 1999
  • 본 논문은 기존 분류형 신경망의 인식성능을 향상시키기 위하여 프레임 정규화와 비선형 사후확률 추정법(N-APPEM)을 제안하고 한국어 숫자음에 대하여 예측형과 분류형 신경망으로 인식성능을 평가하였다. 실험결과 예측형 신경망에서 최고 98.0%의 인식률을 얻었다. 예측형 신경망은 네트워크가 입력패턴의 카테고리 수만큼 마련되는 복잡한 네트워크를 가지는 반면에 분류형 신경망은 단일 네트워크로 구성되며 프레임 정규화와 비선형 사후확률 추정법으로 85.5%까지 인식률을 향상시킬 수 있었으며 이는 기존의 방법보다 인식률이 12.0% 향상된 것이다.

  • PDF

칼라 정보와 N4M 특징 매칭을 이용한 차량 번호판 자동 인식에 관한 연구 (A Study on the Automatic Recognition of a Car License Plate Using The color Information and N4M Feature Matching)

  • 이종은;이윤형;김재석;정기봉;오무송
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.151-154
    • /
    • 2000
  • 차량 번호판 영상을 안정적으로 추출하여 인식하는 방법에는 여러 가지 땅법들이 제시되어 왔다. 기존의 연구들은 번호판 영역 추출에는 높은 성공률을 보이고 있으나 상대적으로 문자 인식의 성공률이 그에 미치지 못해서 전체적인 인식 성공률에 저하를 가져오는 경우가 대부분 이었다. 따라서 본 연구에서는 칼라 정보를 이용하여 입력 영상의 밝기 보정과 번호판 영역을 추출하고 N4M (Normalized 4 - Mash)을 적용하여 문자인식 처리 시간을 단축시키고 인식글을 향상시킬 수 있었다.

  • PDF

한국어 음성/문자 공용인식기의 성능향상을 위한 가변 상태수 CHMM모델의 구성 (Difference State Number of CHMM Model to Improve the Performance of SCCRS)

  • 석수영;김민정;김광수;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.95-98
    • /
    • 2002
  • 문자인식 또는 음성인식을 위해 사용되어지는 CHMM(Continuous Hidden Markov Model)모델은 일반적으로 모델의 상태수를 일정한 수로 고정하는 고정 상태수 모델 구조를 가지고 있으나, 이는 개별적인 인식 단위의 특성을 고려하지 않은 경우로써 이를 고려한 가변 상태수 모델을 사용할 경우 인식률 향상을 기대할 수 있다. 개별적인 인식 단위에 적합한 모델 상태수를 결정하는 방법으로 파라미터 히스토그램 방법과, BIC(Bayesian Information Criterion)방법을 사용하는 것이 대표적이다. 이들 방법들은 개별적인 인식단위의 우도값만을 향상시키기 위한 방법으로 전체인식률과 직접적으로 비례하지는 않는다. 따라서, 본 논문에서는 고정 상태수를 갖는 모델 적용 방법과 인식단위별 상태수 변화에 따른 인식률을 비교하였으며, 이를 바탕으로 각 모델별 상태수를 달리하는 가변 상태수 CHMM모델 구성 방법을 제안한다. 제안된 가변상태수 모델의 유효성을 확인하기 위해 음성/문자 공용인식기 중 필기체 문자 인식에 적용한 결과 제안한 LM(Local Maximum)으로 구성된 가변 상태수 모델이 MLE와 BIC로 구성된 모델과 인식률 면에서는 거의 동일한 성능을 유지하면서 전체 상태수는 MLE 모델에 비해 $31\%$, BIC로 구성된 모델에 비해 $22\%$ 감소를 나타내어 제안한 모델의 유효성을 확인할 수 있었다.

  • PDF

코드북과 VQ 최적화에 의한 음소/고립단어 인식률 분석 (Analysis of Phoneme/Isolated Word Recognition Rate Using Codebook and VQ Optimization)

  • 안홍진;주상현;진원;김기두
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.675-678
    • /
    • 1999
  • 본 논문에서는 음소별 코드북 개수의 선택과 벡터 양자화에 따른 음소 인식률과 고립단어 인식률에 대하여 다룬다. 음성모델은 이산 확률 밀도를 갖는 DHMM(Discrete Hidden Markov Model)을 사용하였으며, 코드북 생성과 벡터 양자화 알고리즘으로는 K-means 알고리즘과 LBG(Linde, Buzo, Gray) 알고리즘을 사용하였다 음소별 코드북 개수와 벡터 양자화를 최적화함으로써 음소 인식률을 향상시킬 수 있으며, 그 결과 안정된 고립단어 인식률을 얻을 수 있다.

  • PDF

사용자의 성향 기반의 얼굴 표정을 통한 감정 인식률 향상을 위한 연구 (A study on the enhancement of emotion recognition through facial expression detection in user's tendency)

  • 이종식;신동희
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.53-62
    • /
    • 2014
  • 인간의 감정을 인식하는 기술은 많은 응용분야가 있음에도 불구하고 감정 인식의 어려움으로 인해 쉽게 해결되지 않는 문제로 남아 있다. 인간의 감정 은 크게 영상과 음성을 이용하여 인식이 가능하다. 감정 인식 기술은 영상을 기반으로 하는 방법과 음성을 이용하는 방법 그리고 두 가지를 모두 이용하는 방법으로 많은 연구가 진행 중에 있다. 이 중에 특히 인간의 감정을 가장 보편적으로 표현되는 방식이 얼굴 영상을 이용한 감정 인식 기법에 대한 연구가 활발히 진행 중이다. 그러나 지금까지 사용자의 환경과 이용자 적응에 따라 많은 차이와 오류를 접하게 된다. 본 논문에서는 감정인식률을 향상시키기 위해서는 이용자의 내면적 성향을 이해하고 분석하여 이에 따라 적절한 감정인식의 정확도에 도움을 주어서 감정인식률을 향상 시키는 메카니즘을 제안하였으며 본 연구는 이러한 이용자의 내면적 성향을 분석하여 감정 인식 시스템에 적용함으로 얼굴 표정에 따른 감정인식에 대한 오류를 줄이고 향상 시킬 수 있다. 특히 얼굴표정 미약한 이용자와 감정표현에 인색한 이용자에게 좀 더 향상된 감정인식률을 제공 할 수 있는 방법을 제안하였다.

한국어 문미억양 강조를 통한 향상된 음성문장 감정인식 (Toward More Reliable Emotion Recognition of Vocal Sentences by Emphasizing Information of Korean Ending Boundary Tones)

  • 이태승;박미경;김태수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.514-516
    • /
    • 2005
  • 인간을 상대하는 자율장치는 고객의 자발적인 협조를 얻기 위해 암시적인 신호에 포함된 감정과 태도를 인지할 수 있어야 한다. 인간에게 음성은 가장 쉽고 자연스럽게 정보를 교환할 수 있는 수단이다. 지금까지 감정과 태도를 이해할 수 있는 자동시스템은 발성문장의 피치와 에너지에 기반한 특징을 활용하였다. 이와 같은 기존의 감정인식 시스템의 성능은 문장의 특정한 억양구간이 감정과 태도와 관련을 갖는다는 언어학적 지식의 활용으로 보다 높은 향상이 가능하다. 본 논문에서는 한국어 문미억양에 대한 언어학적 지식을 피치기반 특징과 다층신경망을 활용하여 구현한 자동시스템에 적용하여 감정인식률을 향상시킨다. 한국어 감정음성 데이터베이스를 대상으로 실험을 실시한 결과 $4\%$의 인식률 향상을 확인하였다.

  • PDF