• Title/Summary/Keyword: 인발 실험

Search Result 275, Processing Time 0.02 seconds

Analysis of Mechanical Behavior for a Pultruded-Wound Hollow Rod of Unsaturated Polyester Resin(UP) with Glass Fibers (인발-와인딩에 의한 불포화수지 섬유강화 중공봉의 기계적 거동해석)

  • Kim, Zoh-Gweon;Lin, Ye
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Analysis of mechanical behavior for a pultruded-wound hollow rod is presented. For this purpose, the pultruded-wound hollow rod is manufactured by the new winder attached to the conventional pultrusion system. And the conventional pultrusion process is newly altered to manufacture pultruded-wound specimens. A computer program, POST II, is modified to perform this study, In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piolar-Kirchhoff stress tensor and the Green strain tensor are used. For the finite element modeling of the composite hollow rod, the eight-node degenerated shell element is utilized. In order to estimate the failure, the maximum stress criterion is adopted to the averaged stress in the each layer of the finite elements. As numerical examples, the behavior of glass/up composite hollow rod is investigated from the initial loading to the final collapse. Present finite element results considering stiffness degradation and stress unload due to failure shows excellent agreement with experiments in the ultimate load, failure and deformations.

  • PDF

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.

A Study on Pull-out Capacity and Shear resistance strength change by grasses (초본류에 의한 인발저항력 및 전단저항력 변화에 관한 연구)

  • Kim, Taegyun;Chae, Soo Kwon;Chun, Seung Hoon
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.431-440
    • /
    • 2013
  • It was tested in field that a Pull-out Capacity and Shear resistance strength change of reed, common reed and sedge which were planted by mat-type turf and used for revegetation of bank. The testes were done for 9 weeks from end of May and the grasses were planted on sandy soil. Roots grew fastly after planted and increasement of a common reed and sedge root were reduced after 4 weeks but increasement of reed roots were not reduced. The difference of increasement of roots is due to a difference of propagation method. Sedge propagate by seed. Reed and commom reed propagate by seed and subterranean stem and reed has bigger subterranean stem than common reed. So increasement of common reed and sedge roots were slow than reed. By root growth pattern, increasement of pull-out capacity and shear resistance strength showed very similar way of root growth, those of common reed and sedge were fast in early stage of cultivation but were reduced. But increasement of pull-out capacity and shear resistance strength of reed was not reduced. A Maximum shear resistance strength called critical shear resistance strength of common reed and sedge can be Analyzed at 11 weeks after planted.

Experimental Studies on the Structural Safety of Pipe-Houses (파이프하우스의 구조안전에 관한 실험적 연구)

  • 김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This study was carried out to make fundamental data for structural safety test of pipe- houses. Experiment on the stress distribution of pipe- houses was conducted to find suitable structural analysis model by examination of end support conditions of pipe. Besides, the loading test and the pile driving test were done to find pull-out capacity and bearing capacity of pipe on the assumption that pipe is pile foundation. For single span pipe - house, the theoretical results assuming the end support condition of pipe is fixed under ground agreed closely with the experimental results of stress distribution. On the other hand for double span pipe -house, the end support conditions of pipe were fixed support when vertical load is applied, and hinged one when horizontal load is applied. The pull - out capacity and allowable bearing capacity of the pipe portion that was buried in the grounds that were soft soil of paddy field and medium or hard soils of dry field derived from experimental results.

  • PDF

The Structural Characteristics of Non-slip Device in Connecting Method Between Steel Pipe Pile and Footing (미끌림 방지턱을 이용한 강관말뚝 머리 결합부의 구조특성에 관한 실험적 연구)

  • 박영호;김낙영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.227-243
    • /
    • 2003
  • To find the structural characteristics of non-slip device in connecting method B between steel pipe pile and concrete footing, compression and uplift test was performed for full sized specimens not having non-slip device, those having non-slip device with two curved steel plate bars welded inside the steel pipe pile(standard method), and those having non-slip device with serveral curved steel plate bars bolted inside the steel pipe pile(new method). As a result, specimens not having non-slip device had chemical debonding failure at 15.6tonf of peak uplift load and 27.57tonf of peak compression load. And the standard method and the new method showed about 8.9 times of peak uplift load and 6.2 times of peak compression load higher than specimens not having non-slip device. The load transfers of lower non-slip devices of the standard method and the new method were similar in behavior, while the higher non-slip device of the new method showed higher ratio of load transfer than that of the standard method. And these two methods had nearly the same composite action and structural capacity caused by non-slip devices.

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Clay (점성토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Seo, Jungwon;Kim, Nara;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.83-89
    • /
    • 2012
  • Anchor, soil nail and micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. The pressure injection-grouting techniques helps to increase the bearing capacity of reinforcing member by enhancing larger effective pile diameter and increasing the radial stresses acting on the grout body and causing irregular surface. However, the pressure reinjection-grouting techniques is not commonly used because grouting equipment and practical application example are short and the verification of reinforcing effect is difficult. In this study, the laboratory test was performed to evaluate the reinforcing effect with variation of grouting methods in clay. As a result of the test, the pressure reinjection-grouting techniques showed that the pullout capacity of reinforcing member increased up to 1.22~2.61 times comparing to the gravity fill techniques.

Pullout Characteristics of Reinforcing Body Using Pressure Re-injection Grouting Method (압력재주입 그라우팅 방식을 이용한 보강재의 인발특성)

  • Lee, Bongjik;Kim, Sangsu;Youn, Junsik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.25-31
    • /
    • 2010
  • Anchor, soil nail, micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. In domestic case, gravity fill techniques and pressure grouting techniques are mainly used. In contrast the pressure re-injection grouting method is not commonly used because grouting equipment and lack of practical application example is short and the verification of reinforcing effect is difficult. Pressure re-injection grouting is a kind of post grouting which technique increases the radial stresses acting on the grout body and causes irregular surface to be developed around bond length that tends to interlock the grout and the ground. In this study, the field test was performed to evaluate the reinforcing effect with the variation of grouting methods and pullout characteristics of reinforcing member placed by pressure re-injection grouting method. The test results showed that the post-grouting methods were useful to increase the pullout capacity.

A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition (지반조건에 따른 말뚝의 인발저항 평가를 위한 말뚝-지반 경계면 강도감소계수 고찰)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2019
  • This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{inter}$) on pile-soil interface were applied to simulate appropriately the shear behavior at the pile-soil interface, and then the reliability of numerical analysis method was verified by comparison of FEA results and previous experimental research(You et al., 2018). In addition, a the deformation characteristics at the pile-soil interface and determination method of $R_{inter}$ value was laid out. The results showed that the FEA, based on the analytical model applied in this study simulates appropriately the characteristics of the pile-soil interface by pullout model test of pile. In order to apply the suggested $R_{inter}$ value, it is necessary to consider the condition of the relative density and the fines content in ground.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Setting up Relationship between Pull-out Resistance of Helical Anchor and Rotational Penetration Torque for Methodology Development (헬리컬 앵커개발 및 적용을 위한 앵커의 회전 관입 토크와 인발저항력과의 상관관계 정립)

  • Kim, Nak-Kyeong;Kim, Young-Uk;Moon, Jun-Ho;Xin, Zhen-Hua;Gu, Kyo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.661-667
    • /
    • 2016
  • This study evaluated the potential of methodology development of the helical type anchor for soft ground applications. The rotational penetration of the helix structure might make construction-steps easy without the soil spitting and reusable rods could reduce the material cost. Removal of the anchors would be simple as a construction, which can be named the removal anchor. The anchoring resistance after construction is strongly related to the number of helixes resulting in a concise design process. The investigation involved a chamber test with soft soils. In the test, a specially designed and fabricated helical anchor and torque-driver were used to obtain the maximum pull-out resistance of the anchor after rotational penetration. As a result of the tests, The rotational torque and pull-out resistance have a proportional relationship with the strength of the prepared soils. Within the range of the study, the torque of the anchor penetrating increased with increasing pull-out resistance.