• Title/Summary/Keyword: 인발 거동

Search Result 212, Processing Time 0.025 seconds

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

Analysis of Ultimate Capacity of Plate Anchor on Loading Rate Capacity in Clay (점토 지반에서 인발속도에 따른 판앵커의 극한 인발저항력 분석)

  • Seo, Young-Kyo;Ryu, Dong-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.15-21
    • /
    • 2013
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Various types of earth anchors are now used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research, we analyzed the uplift behavior of plate anchors in clay using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed for various cases.

Bond Splitting Strength and Behavior of GFRP Reinforcement with Roughened Surface (거친표면 GFRP 보강근의 쪼갬부착파괴강도 및 거동 고찰)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • In this experimental study, bond splitting strength and behavior were evaluated through pull-out tests. The tests were conducted on a GFRP rebar with roughened surface which was produced by Canadian manufacturer. The used variables in this study were rebar diameter, cover depth and compressive strength of concrete. For each variable, five specimens were made and tested to obtain good results. The bond splitting behavior was investigated from the relationship of pull-out force and slip. The experimental bond splitting strength was compared with the predicted strength obtained from the equations presented by some researchers. The results of the comparison demonstrated that the strength could be predicted well by using the Harajli et al's equation.

Assessment Method of Geosynthetic Pullout Resistance Considering Soil Confinement Effect (구속효과를 고려한 토목섬유의 인발저항력 평가기법)

  • 방윤경;이준대;전영근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.135-148
    • /
    • 2001
  • In this study, an assessment method was proposed to evaluate the pullout resistance between geosynthetic and backill soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. For this analysis friction characteristics of geosynthetic-soil and stress-strain relationships subjected to soil confined pressure were investigated by performing the laboratory pullout tests for three types of geosynthetics and performing the confined extension tests far seven types of geosynthetics having geotextiles, composite geosynthetics and geogrids. A comparison was made between unconfined an confined moduli far each geosynthetic material to quantify the soil confinement effect on stress-strain properties. A comparison was also made between the relative increase of moduli at the same strain level among the seven geosynthetic materials to demonstrate the different responses of these geosynthetic materials under soil confinement. Based on the proposed procedure, it was shown that values of the increased tensile force are applicable fur the evaluation of friction strengths between five types of geosynthetics and sands in light of the soil confinement effect.

  • PDF

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Numerical Analysis of Group Suction Anchor of Parallel Arrangement Installed in Sand Subjected to Pullout Load (모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 수치해석 연구)

  • Kim, Surin;Choo, Yun Wook;Kwon, Osoon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.61-69
    • /
    • 2014
  • In this study, the performance of group suction anchors installed in sand and subjected to pullout loading was investigated by numerical analysis. The group suction anchors consist of two or three units rigidly connected to each other in parallel array and the pullout resistances were compared with that of a single anchor. Parametric study was performed using numerical models to study the effect of the physical conditions of the group anchor. The parameters include the skirt length to diameter ratio of a unit suction anchor, the pad-eye location, inclination of loading and the spacing between unit suction anchors. The analysis shows that the ratios of the pullout capacity of double suction anchor and triple suction anchor to that of single anchor are 1.7 and 2.4, respectively. The ratio increases with the increase in the spacing between the unit anchors. The other parameters such as the skirt length to the diameter ratio, the location of the pad-eye and the loading inclination have negligible effect on the ratio of pullout resistances of the group anchor to the single anchor.

Development of Precast Slab Track Reinforced with GFRP and Analysis of Behavior (GFRP로 보강된 프리캐스트 슬래브 궤도 개발 및 거동분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Moon, Do-Young;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2072-2076
    • /
    • 2011
  • 철도 시스템에서 철도궤도와 레일은 주요한 신호 시스템의 일부로 사용되고 있으나 콘크리트 슬래브 궤도 내부의 철근으로 인한 신호전류 감소, 교란 등을 방지하기 위해 과도한 절연작업이 필요하다. 본 연구에서는 국내에서 기 개발된 프리캐스트 슬래브 궤도의 횡방향 철근을 GFRP 보강근으로 대체하여 절연작업의 감소를 가능하게 하였다. GFRP로 보강된 프리캐스트 슬래브 궤도의 설계과정과 정적 휨 시험과 단부의 연결철근 인발 시험을 통한 거동 분석 및 고찰 내용을 제시하였다. 휨 시험과 실스케일 인발 시험의 결과 정적 휨 강도는 정립된 설계법에 의해 적절한 강도를 가지고 있으나 기 개발된 연결철근의 위치와 형태는 온도 또는 수축으로 인해 발생할 수 있는 축력을 저항할 수 없음을 확인하였다.

  • PDF

The Study on Pullout Resistance Characteristics of the Compression Anchor by Pullout Tests on the Field (현장실험에 의한 압축형 앵커의 인발거동특성 연구)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.44-52
    • /
    • 2002
  • The mechanism of pullout resistance of compression anchor is analysed. This anchor is developed through the field pullout tests and the laboratory element test. The compression anchor is characterized by decrease of progressive failure, simple site work, economy and durability compared with tension anchor. The characteristics of compression anchor, compared with tension anchor. mainly are summarized as follows ; (1) The plastic displacement of anchor body is very small during pullout of anchor. (2) Total anchor length decreases by the shortening of free length; (3) The progressive failure is decreased.; (4) The safety factor for pullout resistance increases with time after construction of anchor.

An experimental study on the tensile performance evaluation of steel fiber reinforced cementitious composites according to fiber pull-out behabior (강섬유보강 시멘트 복합체의 섬유인발거동에 따른 인장성능 평가에 관한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.155-156
    • /
    • 2020
  • The purpose of this study is to evaluate tensile performance of cementitious composites reinforced with steel fiber. The tensile performance of steel fiber reinforced cementitious composites is related to the tensile performance of reinforced fiber, and depends on the fracture or pull-out of fiber. Therefore, the tensile performance was compared and analyzed by conducting a direct tensile test on the tensile specimens of cementitious composites reinforced with hook-type steel fiber and amorphous steel fiber.

  • PDF