• Title/Summary/Keyword: 인레이

Search Result 64, Processing Time 0.019 seconds

COLOR STABILITY OF THE RESIN CEMENTS WITH ACCELERATED AGING (레진시멘트의 색안정성에 대한 가속시험)

  • Song, Ha-Jeung;Park, Su-Jung;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.389-396
    • /
    • 2008
  • The purpose of this study was to evaluate the color stability of resin cements with accelerated test. Four dual curing resin cements: Panavia-F (KURARAY). Duolink (BISCO), Variolink-II (Ivoclar Vivadent), and RelyX Unicem (3M ESPE) and 1 self curing resin cement: Resiment CE (j. l. Blosser) were used in this study. In control group, Gradia Anterior (GC) composite resin and Tescera Dentin (Bisco) indirect composite were used. Ten disk shape specimens were made from each resin cement. The specimens were subjected to an accelerated aging process in a refrigerated bath circulator at 60$^{\circ}C$ for 15 and 30 days. Spectrophotometric analyses were made before and after 15 days and 30 days of accelerated aging time. The color characteristics ($L^*,\;a^*,\;b^*$) and the color difference (${\Delta}E^*$) of the specimens before and after immersion were measured and computed. Regardless of type of the resin cements, $L^*$ value was decreased and $a^*$ value was increased, but there were no significant difference. But $b^*$ value was increased significantly (p < 0.05). Tescera inlay showed least color change (p < 0.05), but Gradia showed notable color change after 15 days. After 30 days on accelerated aging, ${\Delta}E^*$ value was increased (Panavia-F < Variolink-II < Resiment CE < Duolink < Unicem) (p < 0.05). but there were no significant difference among Panavia-F, Variolink-II, and Resiment CE groups. After 30 days of accelerated aging, ${\Delta}E^*$ value of all resin cements were greater than 3.0 and could be perceived by the human eye.

A SURVEY ON THE USE OF COMPOSITE RESIN IN CLASS II RESTORATION IN KOREA (2급 와동 수복 시 한국 치과 지사들의 복합레진 사용 실태 연구)

  • Shin, Dong-Ho;Park, Se-Eun;Yang, In-Seok;Chang, Ju-Hea;Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • The purpose of this study was to assess the current materials, methods and difficulties according to the year of licence and educational background of Korean dentists in Class II direct composite resin restorations. Total 17 questions were included in the questionnaire. Questions were broadly divided into two parts: first. operator's information. and second. the materials and methods used in Class II posterior composite restoration. The questionnaire was sent to dentists enrolled in Korean Dental Association via e-mail. Total 12,193 e-mails were distributed to dentists. 2,612 e-mails were opened, and 840 mails (32.2%) were received from respondents. The data was statically analyzed by chi-square test using SPSS(v. 12.0.1, SPSS Inc. Chicago, IL, USA). Male dentists among respondents was 79%. 60.3% of the respondents acquired their licences recently (1998-2007), and 77% practiced in private offices. 83.4% have acquired their knowledge through school lectures, conferences and seminars. For the Class II restorations, gold inlays were preferred by 65.7% of respondents, while direct composite resin restorations were used by 12.1 % amalgam users were only 4.4% of respondents. For the restorative technique, 74.4% of respondents didn't use rubber dam as needed. For the matrix. mylar strip (53.4%), metal matrix (33.8%) and Palodent system (6.5%) were used. 99.6% of respondents restored the Class II cavity by incremental layering. Obtaining of the tight interproximal contact was considered as the most difficult procedure (57.2%) followed by field isolation (21 %). Among various bonding systems, 22.6% of respondents preferred SE Bond and 20.2% used Single Bond. Z-250 was used most frequently among a variety of composite resins.

THE EFFECTS OF THERMAL STIMULI TO THE FILLED TOOTH STRUCTURE (온도자극이 충전된 치질에 미치는 영향)

  • Baik, Byeong-Ju;Roh, Yong-Kwan;Lee, Young-Su;Yang, Jeong-Suk;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.339-349
    • /
    • 1999
  • The dental structure substituted by restorative materials may produce discomfort resulting from hot or cold stimuli. To investigate the effects of this stimuli on the human teeth, thermal analysis was carried out by calculation of general heat conduction equation in a modeled tooth using numerical method. The method has been applied to axisymmetric and two-dimensional model, analyzing the effects of constant temperature $4^{\circ}C\;and\;60^{\circ}C$. That thermal shock was provided for 2 seconds and 4 seconds, respectively and recovered to normal condition of $20^{\circ}C$ until 10 seconds. The thermal behavior of tooth covered with a crown of gold or stainless steel was compared with that of tooth without crown. At the same time, the effects of restorative materials(amalgam, gold and zinc oxide-eugenol(ZOE)) on the temperature of PDJ(pulpo-dentinal junction) has been studied. The geometry used for thermal analysis so far has been limited to two-dimensional as well as axisymmetric tooth models. But the general restorative tooth forms a cross shaped cavity which is no longer two-dimensional and axisymmetric. Therefore, in this study, the three-dimensional model was developed to investigate the effect of shape and size of cavity. This three-dimensional model might be used for further research to investigate the effects of restorative materials and cavity design on the thermal behavior of the real shaped tooth. The results were as follows; 1. When cold temperature of $4^{\circ}C$ was applied to the surface of the restored teeth with amalgam for 2 seconds and recovered to ambient temperature of $20^{\circ}C$, the PDJ temperature decreased rapidly to $29^{\circ}C$ until 3 seconds and reached to $25^{\circ}C$ after 9 seconds. This temperature decreased rather slowly with stainless steel crown, but kept similar temperature within $1^{\circ}C$ differences. Using the gold as a restorative material, the PDJ temperature decreased very fast due to the high thermal conductivity and reached near to $25^{\circ}C$ but the temperature after 9 seconds was similar to that in the teeth without crown. The effects of coldness could be attenuated with the ZOE situated under the cavity. The low thermal conductivity caused a delay in temperature decrease and keeps $4^{\circ}C$ higher than the temperature of other conditions after 9 seconds. 2. The elapse time of cold stimuli was increased also until 4 seconds and recovered to $20^{\circ}C$ after 4 seconds to 9 seconds. The temperature after 9 seconds was about $2-3^{\circ}C$ lower than the temperature of 2 seconds stimuli, but in case of gold restoration, the high thermal conductivity of gold caused the minimum temperature of $21^{\circ}C$ after 5 seconds and got warm to $23^{\circ}C$ after 9 seconds. 3. The effects of hot stimuli was also investigated with the temperature of $60^{\circ}C$. For 2 seconds stimuli, the temperature increased to $40^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 3 seconds of stimuli and decreased to $30^{\circ}C$ after 9 seconds in the teeth without crown. This temperature was sensitive to surface temperature in the teeth with gold restoration. It increased rapidly to $41^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 2 seconds and decreased to $28^{\circ}C$ after 9 seconds, which showed $13^{\circ}C$ temperature variations for 9 seconds upon the surface temperature. This temperature variations were only in the range of $5^{\circ}C$ by using ZOE in the bottom of cavity and showed maximum temperature of $37^{\circ}C$ after 3 seconds of stimuli.

  • PDF

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.