• Title/Summary/Keyword: 인과 딥러닝

Search Result 127, Processing Time 0.025 seconds

Forecasting Cryptocurrency Prices in COVID-19 Phase: Convergence Study on Naver Trends and Deep Learning (COVID-19 국면의 암호화폐 가격 예측: 네이버트렌드와 딥러닝의 융합 연구)

  • Kim, Sun-Woong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.116-125
    • /
    • 2022
  • The purpose of this study is to analyze whether investor anxiety caused by COVID-19 affects cryptocurrency prices in the COVID-19 pandemic, and to experiment with cryptocurrency price prediction based on a deep learning model. Investor anxiety is calculated by combining Naver's Corona search index and Corona confirmed information, analyzing Granger causality with cryptocurrency prices, and predicting cryptocurrency prices using deep learning models. The experimental results are as follows. First, CCI indicators showed significant Granger causality in the returns of Bitcoin, Ethereum, and Lightcoin. Second, LSTM with CCI as an input variable showed high predictive performance. Third, Bitcoin's price prediction performance was the highest in comparison between cryptocurrencies. This study is of academic significance in that it is the first attempt to analyze the relationship between Naver's Corona search information and cryptocurrency prices in the Corona phase. In future studies, extended studies into various deep learning models are needed to increase price prediction accuracy.

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

A Design of Sign Language-Text Translation System Using Deep Learning Vedio Recognition (딥러닝 영상인식을 이용한 수화-텍스트 번역 시스템 설계)

  • Lee, JongMyeong;Kim, Kang-Gyoo;Yoo, Seoyeon;Lee, SeungGeon;Chun, Seunghyun;Beak, JeongYoon;Ha, Ok-Kyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.475-476
    • /
    • 2022
  • 본 논문에서는 청각장애인의 사회참여성 증진 및 사회적 차별감소를 목적으로 딥러닝 영상인식 기반으로 MediaPipe 기술을 활용한 수화-텍스트 번역시스템을 설계한다. 제시하는 시스템은 실시간으로 수집된 수화 사용자의 영상정보를 통해 동작과 표정을 인식하여 텍스트로 번역함으로써 장애인과 비장애인의 원활한 의사소통 서비스를 제공하는 것을 주 목적으로한다. 향후 개선된 수화 인식 및 문장 조합을 통해 일상에서 청각장애인과 일반인의 자유로운 커뮤니케이션을 제공하는 서비스로 확장하고자한다.

  • PDF

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Trends in Blockchain-based Privacy Preserving Technology for Artificial Neural Networks (인공신경망에서의 블록체인 기반 개인정보보호 기술 동향)

  • Kang, Yea-Jun;Kim, Hyun-Ji;Lim, Se-Jin;Kim, Won-Woong;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.564-567
    • /
    • 2022
  • 최근 딥러닝이 다양한 분야에서 활용됨에 따라 중앙 집중식 서버, 적대적 공격 그리고 데이터 부족 및 독점화와 같은 다양한 문제점이 발생하고 있다. 또한 연합학습을 수행할 경우, 클라이언트가 잘못된 기울기를 서버에 제공하거나 서버가 악의적인 행동을 할 경우 심각한 문제로 이어질 수 있다. 이와 같은 보안 취약점을 해결하기 위해 딥러닝에 블록체인을 결합하여 중앙 집중식 서버를 분산화하고 각 참여자 노드에게 인센티브를 줌으로써 신뢰할 수 있는 데이터를 수집하는 기법이 연구되고 있다. 본 논문에서는 위와 같이 딥러닝의 문제점을 해결하기 위해 블록체인이 어떻게 적용되었는지 살펴본다.

Deep Learning-based Pet Monitoring System and Activity Recognition device

  • Kim, Jinah;Kim, Hyungju;Park, Chan;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, we propose a pet monitoring system based on deep learning using an activity recognition device. The system consists of a pet's activity recognition device, a pet owner's smart device, and a server. Accelerometer and gyroscope data were collected from an Arduino-based activity recognition device, and the number of steps was calculated. The collected data is pre-processed and the amount of activity is measured by recognizing the activity in five types (sitting, standing, lying, walking, running) through a deep learning model that hybridizes CNN and LSTM. Finally, monitoring of changes in the activity, such as daily and weekly briefing charts, is provided on the pet owner's smart device. As a result of the performance evaluation, it was confirmed that specific activity recognition and activity measurement of pets were possible. Abnormal behavior detection of pets and expansion of health care services can be expected through data accumulation in the future.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.

A Deep Learning-based Regression Model for Predicting Government Officer Education Satisfaction (공무원 직무 전문교육 만족도 예측을 위한 딥러닝 기반 회귀 모델 설계)

  • Sumin Oh;Sungyeon Yoon;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.667-671
    • /
    • 2024
  • Professional job training for government officers emphasizes establishing desirable values as public officials and improving professionalism in public service. To provide customized education, some studies are analyzed factors affecting education satisfaction. However, there is a lack of research predicting education satisfaction with educational contents. Therefore, we propose a deep learning-based regression model that predicts government officer education satisfaction with educational contents. We use education information data for government officer. We use one-hot encoding to categorize variables collected in text format, such as education targets, education classifications, and education types. We quantify the education contents stored in text format as TF-IDF. We train our deep learning-based regression model and validate model performance with 10-Fold Cross Validation. Our proposed model showed 99.87% accuracy on test sets. We expect that customized education recommendations based on our model will help provide and improve optimized education content.

Encoding and language detection of text document using Deep learning algorithm (딥러닝 알고리즘을 이용한 문서의 인코딩 및 언어 판별)

  • Kim, Seonbeom;Bae, Junwoo;Park, Heejin
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.124-130
    • /
    • 2017
  • Character encoding is the method used to represent characters or symbols on a computer, and there are many encoding detection software tools. For the widely used encoding detection software"uchardet", the accuracy of encoding detection of unmodified normal text document is 91.39%, but the accuracy of language detection is only 32.09%. Also, if a text document is encrypted by substitution, the accuracy of encoding detection is 3.55% and the accuracy of language detection is 0.06%. Therefore, in this paper, we propose encoding and language detection of text document using the deep learning algorithm called LSTM(Long Short-Term Memory). The results of LSTM are better than encoding detection software"uchardet". The accuracy of encoding detection of normal text document using the LSTM is 99.89% and the accuracy of language detection is 99.92%. Also, if a text document is encrypted by substitution, the accuracy of encoding detection is 99.26%, the accuracy of language detection is 99.77%.