• Title/Summary/Keyword: 인과 딥러닝

Search Result 127, Processing Time 0.024 seconds

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification (CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석)

  • Kwak, Taehong;Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.959-971
    • /
    • 2019
  • CNN (Convolutional Neural Network) is one representative deep learning algorithm, which can extract high-level spatial and spectral features, and has been applied for hyperspectral image classification. However, one significant drawback behind the application of CNNs in hyperspectral images is the high dimensionality of the data, which increases the training time and processing complexity. To address this problem, several CNN based hyperspectral image classification studies have exploited PCA (Principal Component Analysis) for dimensionality reduction. One limitation to this is that the spectral information of the original image can be lost through PCA. Although it is clear that the use of PCA affects the accuracy and the CNN training time, the impact of PCA for CNN based hyperspectral image classification has been understudied. The purpose of this study is to analyze the quantitative effect of PCA in CNN for hyperspectral image classification. The hyperspectral images were first transformed through PCA and applied into the CNN model by varying the size of the reduced dimensionality. In addition, 2D-CNN and 3D-CNN frameworks were applied to analyze the sensitivity of the PCA with respect to the convolution kernel in the model. Experimental results were evaluated based on classification accuracy, learning time, variance ratio, and training process. The size of the reduced dimensionality was the most efficient when the explained variance ratio recorded 99.7%~99.8%. Since the 3D kernel had higher classification accuracy in the original-CNN than the PCA-CNN in comparison to the 2D-CNN, the results revealed that the dimensionality reduction was relatively less effective in 3D kernel.

Motion Monitoring using Mask R-CNN for Articulation Disease Management (관절질환 관리를 위한 Mask R-CNN을 이용한 모션 모니터링)

  • Park, Sung-Soo;Baek, Ji-Won;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • In modern society, lifestyle and individuality are important, and personalized lifestyle and patterns are emerging. The number of people with articulation diseases is increasing due to wrong living habits. In addition, as the number of households increases, there is a case where emergency care is not received at the appropriate time. We need information that can be managed by ourselves through accurate analysis according to the individual's condition for health and disease management, and care appropriate to the emergency situation. It is effectively used for classification and prediction of data using CNN in deep learning. CNN differs in accuracy and processing time according to the data features. Therefore, it is necessary to improve processing speed and accuracy for real-time healthcare. In this paper, we propose motion monitoring using Mask R-CNN for articulation disease management. The proposed method uses Mask R-CNN which is superior in accuracy and processing time than CNN. After the user's motion is learned in the neural network, if the user's motion is different from the learned data, the control method can be fed back to the user, the emergency situation can be informed to the guardian, and appropriate methods can be taken according to the situation.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

A Study on the traffic flow prediction through Catboost algorithm (Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구)

  • Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.58-64
    • /
    • 2021
  • As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.

Object Detection based on Mask R-CNN from Infrared Camera (적외선 카메라 영상에서의 마스크 R-CNN기반 발열객체검출)

  • Song, Hyun Chul;Knag, Min-Sik;Kimg, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1213-1218
    • /
    • 2018
  • Recently introduced Mask R - CNN presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation mask of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask R - CNN is an algorithm that extends Faster R - CNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. The mask R - CNN is added to the high - speed R - CNN which training is easy and fast to execute. Also, it is easy to generalize the mask R - CNN to other tasks. In this research, we propose an infrared image detection algorithm based on R - CNN and detect heating elements which can not be distinguished by RGB images. As a result of the experiment, a heat-generating object which can not be discriminated from Mask R-CNN was detected normally.

OpenCV-Based Pets Health Age Prediction System for Reasonable Insurance Premium Calculation (합리적 보험료 산정을 위한 OpenCV기반 반려동물 건강나이 예측 시스템)

  • Min-Kyu Ji;Yo-Han Kim;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.577-582
    • /
    • 2024
  • In 2007, the first domestic pet insurance policies were introduced, and by 2023, numerous insurance products had been developed. The pet insurance market has been expanding steadily. However, as of 2022, only 0.8% of all pet owners have subscribed to pet insurance. Pet owners hesitate to enroll in pet insurance due to expensive premiums, unclear coverage details, and strict enrollment criteria. This paper proposes a model capable of detecting pet eye diseases and predicting their health age. Initially, EfficientNet is employed to identify the pet's eye disease, while OpenCV is utilized to locate and measure the size of the disease, enabling the calculation of the pet's healthy age. By leveraging the calculated health age, the aim is to aid insurance companies in determining pet insurance premiums. This model can facilitate the calculation of reasonable pet insurance rates based on the pet's eye condition and health age. Ultimately, the objective is to implement a system capable of detecting pet eye conditions and predicting their health age.

Fake news detection via news elements (요소 정보 활용을 통한 가짜 뉴스 탐지)

  • Han, Sangdo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.588-590
    • /
    • 2020
  • 본 연구에서는 가짜 뉴스 탐지를 위한 데이터를 구축하고, 내용 기반의 탐지를 위한 시스템을 제안하였으며, 뉴스의 각 요소 정보가 탐지 성능에 미치는 영향을 확인하였다. 이는 기존의 내용 기반 가짜 뉴스 탐지 방법론들의 단점을 보완할 뿐 아니라 뉴스의 요소 정보가 진위 판별에 미치는 영향을 확인하기 위함이었다. 이를 위해 직접 구축한 뉴스 데이터의 제목과 본문을 따로 인코딩하여 판별하였고, 각 요소를 배제한 실험을 통해 뉴스 제목이 가장 중요한 요소 정보임을 확인하였다. 결과적으로 자극적인 제목으로 이목을 끌려는 가짜 뉴스의 속성을 정량적으로 확인할 수 있었다.

  • PDF

A Study on Traffic Accident Detection by Semantic Representation (의미적 표현을 통한 교통사고 검출에 관한 연구)

  • Renjie Jin;Yunsick Sung
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.507-509
    • /
    • 2023
  • 최근 딥러닝은 도로 CCTV 동영상의 교통사고 검출에 널리 사용되지만 일인칭 동영상의 교통사고 검출은 분명히 어렵다. 일인칭 동영상은 역동적이고 시야가 제한되어 있기 때문이다. 본 논문에서는 일인칭 동영상을 분석하여 교통사고를 검출하는 방법을 제시한다. 이 방법은 교통 표현 특성을 분석하는 것 외에도 의미를 이해하고 교통 장면을 인코딩한다. 프레임의 표현 특징은 각 프레임 상의 물체의 특징과 물체의 위치 관계의 공간적 숨겨진 특진을 학습함으로써 얻어진다. 그 후에 프레임 표현 특징과 교통 장면의 특징이 연결되어 GRU 실행기에 공급된다. 여러 GRU 실행기는 분석한 후 사고가 발생했는지 확인된다. 이 방법은 높은 역학과 제한된 시야 문제를 효과적으로 해결한다.

Developing a mobile application serving sign-language to text translation for the deaf (청각 장애인을 위한 수어 영상-자연어 번역 서비스 및 모바일 어플리케이션 구현)

  • Cho, Su-Min;Cho, Seong-Yeon;Shin, So-Yeon;Lee, Jee Hang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1012-1015
    • /
    • 2021
  • Covid-19 로 인한 마스크 착용이 청각장애인들의 소통을 더 어렵게 하는 바, 제 3 자의 도움 없이 쌍방향 소통을 가능하게 하는 서비스의 필요성이 커지고 있다. 이에 본 논문은 소통의 어려움을 겪는 청각장애인과 비청각장애인을 위한 쌍방향 소통 서비스에 대한 연구와 개발 과정, 기대 효과를 담는다. 서비스는 GRU-CNN 하이브리드 아키텍처를 사용하여 데이터셋을 영상 공간 정보와 시간 정보를 포함한 프레임으로 분할하는 영상 분류 기법과 같은 딥 러닝 알고리즘을 통해 수어 영상을 분류한다. 해당 연구는 "눈속말" 모바일 어플리케이션으로 제작 중이며 음성을 인식하여 수어영상과 텍스트로 번역결과를 제공하는 청각장애인 버전과 카메라를 통해 들어온 수어 영상을 텍스트로 변환하여 음성과 함께 제공하는 비청각장애인 버전 두 가지로 나누어 구현한다. 청각장애인과 비장애인의 쌍방향 소통을 위한 서비스는 청각장애인이 사회로 나아가기 위한 가장 기본적인 관문으로서의 역할을 할 것이며 사회 참여를 돕고 소통이라는 장벽을 넘어서는 발돋움이 될 것이라 예측된다.