• Title/Summary/Keyword: 인공 지능 신경망

Search Result 598, Processing Time 0.031 seconds

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

Non-intrusive Calibration for User Interaction based Gaze Estimation (사용자 상호작용 기반의 시선 검출을 위한 비강압식 캘리브레이션)

  • Lee, Tae-Gyun;Yoo, Jang-Hee
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • In this paper, we describe a new method for acquiring calibration data using a user interaction process, which occurs continuously during web browsing in gaze estimation, and for performing calibration naturally while estimating the user's gaze. The proposed non-intrusive calibration is a tuning process over the pre-trained gaze estimation model to adapt to a new user using the obtained data. To achieve this, a generalized CNN model for estimating gaze is trained, then the non-intrusive calibration is employed to adapt quickly to new users through online learning. In experiments, the gaze estimation model is calibrated with a combination of various user interactions to compare the performance, and improved accuracy is achieved compared to existing methods.

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Prediction of League of Legends Using the Deep Neural Network (DNN을 활용한 'League of Legends' 승부 예측)

  • No, Si-Jae;Lee, Hye-Min;Cho, So-Eun;Lee, Doh-Youn;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.217-218
    • /
    • 2021
  • 본 논문에서는 다층 퍼셉트론을 활용하여 League of Legends 게임의 승패를 예측하는 Deep Neural Network 프로그램을 설계하는 방법을 제안한다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 15분 데이터 중 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 softmax 함수보다 sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.

  • PDF

Prediction of KBO playoff Using the Deep Neural Network (DNN을 활용한 'KBO' 플레이오프진출 팀 예측)

  • Ju-Hyeok Park;Yang-Jae Lee;Hee-Chang Han;Yoo-Lim Jun;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.315-316
    • /
    • 2023
  • 본 논문에서는 딥러닝을 활용하여 KBO (Korea Baseball Organization)의 다음 시즌 플레이오프 진출 확률을 예측하는 Deep Neural Network (DNN) 시스템을 설계하고 구현하는 방법을 제안한다. 연구 방법으로 KBO 각 시즌별 데이터를 1999년도 데이터부터 수집하여 분석한 결과, 각 시즌 데이터 중 경기당 평균 득점, 타자 OPS, 투수 WHIP 등이 시즌 결과에 유의미한 영향을 끼치는 것을 확인하였다. 모델 설계는 linear, softmax 함수를 사용하는 것보다 relu, tanh, sigmoid 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 2022 시즌 결과를 예측한 결과 88%의 정확도를 도출했다. 폭투의 수, 피홈런 등 가중치가 높은 변수의 값이 우수할 경우 시즌 결과가 좋게 나온다는 것이 증명되었다. 본 논문에서 설계한 이 시스템은 KBO 구단만이 아닌 모든 야구단에서 선수단을 구성하는데 활용 가능하다고 사료된다.

  • PDF

Object Tracking Algorithm based on Siamese Network with Local Overlap Confidence (지역 중첩 신뢰도가 적용된 샴 네트워크 기반 객체 추적 알고리즘)

  • Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1109-1116
    • /
    • 2023
  • Object tracking is used to track a goal in a video sequence by using coordinate information provided as annotation in the first frame of the video. In this paper, we propose a tracking algorithm that combines deep features and region inference modules to improve object tracking accuracy. In order to obtain sufficient object information, a convolution neural network was designed with a Siamese network structure. For object region inference, the region proposal network and overlapping confidence module were applied and used for tracking. The performance of the proposed tracking algorithm was evaluated using the Object Tracking Benchmark dataset, and it achieved 69.1% in the Success index and 89.3% in the Precision Metrics.

Adversarial learning for underground structure concrete crack detection based on semi­supervised semantic segmentation (지하구조물 콘크리트 균열 탐지를 위한 semi-supervised 의미론적 분할 기반의 적대적 학습 기법 연구)

  • Shim, Seungbo;Choi, Sang-Il;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.515-528
    • /
    • 2020
  • Underground concrete structures are usually designed to be used for decades, but in recent years, many of them are nearing their original life expectancy. As a result, it is necessary to promptly inspect and repair the structure, since it can cause lost of fundamental functions and bring unexpected problems. Therefore, personnel-based inspections and repairs have been underway for maintenance of underground structures, but nowadays, objective inspection technologies have been actively developed through the fusion of deep learning and image process. In particular, various researches have been conducted on developing a concrete crack detection algorithm based on supervised learning. Most of these studies requires a large amount of image data, especially, label images. In order to secure those images, it takes a lot of time and labor in reality. To resolve this problem, we introduce a method to increase the accuracy of crack area detection, improved by 0.25% on average by applying adversarial learning in this paper. The adversarial learning consists of a segmentation neural network and a discriminator neural network, and it is an algorithm that improves recognition performance by generating a virtual label image in a competitive structure. In this study, an efficient deep neural network learning method was proposed using this method, and it is expected to be used for accurate crack detection in the future.

Fire Detection using Deep Convolutional Neural Networks for Assisting People with Visual Impairments in an Emergency Situation (시각 장애인을 위한 영상 기반 심층 합성곱 신경망을 이용한 화재 감지기)

  • Kong, Borasy;Won, Insu;Kwon, Jangwoo
    • 재활복지
    • /
    • v.21 no.3
    • /
    • pp.129-146
    • /
    • 2017
  • In an event of an emergency, such as fire in a building, visually impaired and blind people are prone to exposed to a level of danger that is greater than that of normal people, for they cannot be aware of it quickly. Current fire detection methods such as smoke detector is very slow and unreliable because it usually uses chemical sensor based technology to detect fire particles. But by using vision sensor instead, fire can be proven to be detected much faster as we show in our experiments. Previous studies have applied various image processing and machine learning techniques to detect fire, but they usually don't work very well because these techniques require hand-crafted features that do not generalize well to various scenarios. But with the help of recent advancement in the field of deep learning, this research can be conducted to help solve this problem by using deep learning-based object detector that can detect fire using images from security camera. Deep learning based approach can learn features automatically so they can usually generalize well to various scenes. In order to ensure maximum capacity, we applied the latest technologies in the field of computer vision such as YOLO detector in order to solve this task. Considering the trade-off between recall vs. complexity, we introduced two convolutional neural networks with slightly different model's complexity to detect fire at different recall rate. Both models can detect fire at 99% average precision, but one model has 76% recall at 30 FPS while another has 61% recall at 50 FPS. We also compare our model memory consumption with each other and show our models robustness by testing on various real-world scenarios.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

Anomaly Detections Model of Aviation System by CNN (합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구)

  • Hyun-Jae Im;Tae-Rim Kim;Jong-Gyu Song;Bum-Su Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • Recently, Urban Aircraft Mobility (UAM) has been attracting attention as a transportation system of the future, and small drones also play a role in various industries. The failure of various types of aviation systems can lead to crashes, which can result in significant property damage or loss of life. In the defense industry, where aviation systems are widely used, the failure of aviation systems can lead to mission failure. Therefore, this study proposes an anomaly detection model using deep learning technology to detect anomalies in aviation systems to improve the reliability of development and production, and prevent accidents during operation. As training and evaluating data sets, current data from aviation systems in an extremely low-temperature environment was utilized, and a deep learning network was implemented using the convolutional neural network, which is a deep learning technique that is commonly used for image recognition. In an extremely low-temperature environment, various types of failure occurred in the system's internal sensors and components, and singular points in current data were observed. As a result of training and evaluating the model using current data in the case of system failure and normal, it was confirmed that the abnormality was detected with a recall of 98 % or more.