• Title/Summary/Keyword: 인공 지능 신경망

Search Result 598, Processing Time 0.031 seconds

Generating Fuzzy Rules by Hybrid Method and Its Application to Classification Problems (혼합 방법에 의한 퍼지 규칙 생성과 식별 문제에 응용)

  • Lee, Mal-Rey;Lee, Jae-Pil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1289-1296
    • /
    • 1997
  • To build up a knowledge-based system in an Artifical Inerligence System, selecting an appropriate set of rules is one of the key provlems. In this paper, we discuss a new method for exteacting fuzzy rules diredtly from fuzzy membdrchip function dat for pattern classifcation. The fuzzy rules with variable fuzzy recions are defined by sharing fuzzy space in fuzzy grid.Tehse rules are extracted form memberchop function. Them, optimal input vari-ables for the rules are determined using the number of extracted rules as a criterion. The method is compared with neural networks using Ishibuchi. Finally, in order to demonstrate the cffectiveness of the present method, simulation results are shown.

  • PDF

Design and Simulation of ARM Processor with Floating Point Instructions (부동소수점 명령어를 지원하는 ARM 프로세서의 설계 및 모의실행)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.187-193
    • /
    • 2020
  • Floating point arithmetic in microprocessor is the computation of addition, subtraction, multiplication, and division of floating point data to improve accuracy. In general, when designing a processor, floating point instructions are often excluded because of its complexity and only integer instructions are provided. However, in order to carry out the computations for not only engineering and technical operations but also artificial intelligence and neural networks that are in the spotlight today, floating point operations must be included. In this paper, we design a 32-bit ARMv4 family of processors with floating-point arithmetic instructions using VHDL and verify with ModelSim. As a result, ARM's floating point instructions are successfully executed.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Design of agent intrusion detection system applying data mining (데이터 마이닝을 적용한 에이전트 침입 탐지 시스템 설계)

  • Jeong Jong Kun;Lee Sung Tae;Kim Yong Ho;Lee Yun Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.676-679
    • /
    • 2001
  • As network security is coning up with significant problem after the major Internet sites were hacked nowadays, IDS(Intrusion Detection System) is considered as a next generation security solution for more reliable network and system security rather than firewall. In this paper, we propose the new IDS model which tan detect intrusion in different systems as well as which ran make real-time detection of intrusion in the expanded distributed environment in host level of drawback of existing IDS. We implement its prototype and verify its validity. We use pattern extraction agent so that we can extract automatically audit file needed in distributed intrusion detection even in other platforms.

  • PDF

Design of data mining IDS for transformed intrusion pattern (변형 침입 패턴을 위한 데이터 마이닝 침입 탐지 시스템 설계)

  • 김용호;정종근;이윤배;김판구;염순자
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.479-482
    • /
    • 2001
  • IDS has been studied mainly in the field of the detection decision and collecting of audit data. The detection decision should decide whether successive behaviors are intrusions or not, the collecting of audit data needs ability that collects precisely data for intrusion decision. Artificial methods such as rule based system and neural network are recently introduced in order to solve this problem. However, these methods have simple host structures and defects that can't detect transformed intrusion patterns. So, we propose the method using data mining that can retrieve and estimate the patterns and retrieval of user's behavior in the distributed different hosts.

  • PDF

Design of Intrusion Detection System applying for data mining agent (데이터 마이닝 에이전트를 적용한 침입 탐지 시스템 설계)

  • 정종근;구제영;김용호;오근탁;이윤배
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.619-622
    • /
    • 2002
  • IDS has been studied mainly in the field of the detection derision and collecting of audit data. The detection decision should decide whether successive behaviors are intrusions or not , the collecting of audit data needs ability that collects precisely data for intrusion decision. Artificial methods such as rule based system and neural network are recently introduced in order to solve this problem. However, these methods have simple host structures and defects that can't detect transformed intrusion patterns. So, we propose the method using data mining agent that can retrieve and estimate the patterns and retrieval of user's behavior in the distributed different hosts.

  • PDF

Prediction of Wind Power Generation using Deep Learnning (딥러닝을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.329-338
    • /
    • 2021
  • This study predicts the amount of wind power generation for rational operation plan of wind power generation and capacity calculation of ESS. For forecasting, we present a method of predicting wind power generation by combining a physical approach and a statistical approach. The factors of wind power generation are analyzed and variables are selected. By collecting historical data of the selected variables, the amount of wind power generation is predicted using deep learning. The model used is a hybrid model that combines a bidirectional long short term memory (LSTM) and a convolution neural network (CNN) algorithm. To compare the prediction performance, this model is compared with the model and the error which consist of the MLP(:Multi Layer Perceptron) algorithm, The results is presented to evaluate the prediction performance.

Deep Learning Application of Gamma Camera Quality Control in Nuclear Medicine (핵의학 감마카메라 정도관리의 딥러닝 적용)

  • Jeong, Euihwan;Oh, Joo-Young;Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.461-467
    • /
    • 2020
  • In the field of nuclear medicine, errors are sometimes generated because the assessment of the uniformity of gamma cameras relies on the naked eye of the evaluator. To minimize these errors, we created an artificial intelligence model based on CNN algorithm and wanted to assess its usefulness. We produced 20,000 normal images and partial cold region images using Python, and conducted artificial intelligence training with Resnet18 models. The training results showed that accuracy, specificity and sensitivity were 95.01%, 92.30%, and 97.73%, respectively. According to the results of the evaluation of the confusion matrix of artificial intelligence and expert groups, artificial intelligence was accuracy, specificity and sensitivity of 94.00%, 91.50%, and 96.80%, respectively, and expert groups was accuracy, specificity and sensitivity of 69.00%, 64.00%, and 74.00%, respectively. The results showed that artificial intelligence was better than expert groups. In addition, by checking together with the radiological technologist and AI, errors that may occur during the quality control process can be reduced, providing a better examination environment for patients, providing convenience to radiologists, and improving work efficiency.

A Personal Credit Rating Using Convolutional Neural Networks with Transformation of Credit Data to Imaged Data and eXplainable Artificial Intelligence(XAI) (신용 데이터의 이미지 변환을 활용한 합성곱 신경망과 설명 가능한 인공지능(XAI)을 이용한 개인신용평가)

  • Won, Jong Gwan;Hong, Tae Ho;Bae, Kyoung Il
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.203-226
    • /
    • 2021
  • Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.

NAAL: Software for controlling heterogeneous IoT devices based on neuromorphic architecture abstraction (NAAL: 뉴로모픽 아키텍처 추상화 기반 이기종 IoT 기기 제어용 소프트웨어)

  • Cho, Jinsung;Kim, Bongjae
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2022
  • Neuromorphic computing generally shows significantly better power, area, and speed performance than neural network computation using CPU and GPU. These characteristics are suitable for resource-constrained IoT environments where energy consumption is important. However, there is a problem in that it is necessary to modify the source code for environment setting and application operation according to heterogeneous IoT devices that support neuromorphic computing. To solve these problems, NAAL was proposed and implemented in this paper. NAAL provides functions necessary for IoT device control and neuromorphic architecture abstraction and inference model operation in various heterogeneous IoT device environments based on common APIs of NAAL. NAAL has the advantage of enabling additional support for new heterogeneous IoT devices and neuromorphic architectures and computing devices in the future.