• Title/Summary/Keyword: 인공 지능 기법

Search Result 1,040, Processing Time 0.022 seconds

Optimal Structural Design Using Artificial Intelligence Techniques (인공지능 기술을 이용한 최적 구조설계)

  • 양영순;유원선;한상민
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.213-228
    • /
    • 1998
  • 구조설계 과정에서 설계대안을 효율적으로 생성하여 평가하면서, 특히 다목적 환경 속에서 최적구조의 위상과 부재의 치수까지 동시에 결정할 수 있는 새로운 방식을 제시하고자 한다. 설계자가 설계대안을 생성하기 위해 설계자의 경험과 노하우를 체계적으로 구축해 놓고 이를 적절한 시기에 활용할 수 있게 하는 방법으로는 인공지능 기술의 하나인 사례기반 추론 기법을 사용하였다. 이와 더불어, 설계대안들 간의 효율적인 비교와 평가를 위해서 구조물의 계층적인 면을 고려한 새로운 유전적인 표현법을 개발하였다. 여기에 기존의 유전적 표현법을 변경시켜 생긴 여분의 효과와 계층적인 특징을 가지는 Structured Genetic Algorithm(StrGA)를 변형시켜서 사례기반 추론에 의해 생성된 설계대안들을 표현하였다. 일반적인 구조설계 과정에서는 구조물을 평가하는 기준이 여러 개가 존재하므로, 모든 대안들을 동시에 최적화 하는 과정에 Multicriteria Optimization for Genetic Algorithm(MOGA)를 병합하였다. 본 논문에서는 인공지능 기술을 이용하여 구조물의 위상설계를 할 수 있는 새로운 방법을 제안하여 그 유용성을 truss 설계문제에 대해 검토하였다.

  • PDF

A study on pagoda modeling design by age for artificial intelligence learning (인공지능 학습을 위한 시대별 탑(pagoda) 모델링 설계에 대한 시대별 연구)

  • Eun-ji Kim;Bong-Hyun Kim;Byung-kwon Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.525-527
    • /
    • 2023
  • 본 논문은 2차원적인 문화재 이미지를 모델링 하여, 대한민국의 시대 별 탑의 차이점과 특징을 분석하고 인공지능을 이용한 3D 복원과 구현을 위한 연구이다. 오늘날 현대 사회에서 디지털 매체 및 정보화 시대에서 여러 산업 분야에 적용이 되고 있다. 기존 2D 이미지를 벗어나 문화재의 모습을 다양한 각도에서 쉽게 관찰해 볼 수 있도록 하여, 3D 형태의 복원이 적합하여 연구를 진행하였다. 최근 인공지능 및 기술의 발달로 문화재 정보를 바탕으로 한 3차원 기술을 사용하여 다양한 데이터들과 프로그램을 이용한 모델링이 가능하다. 현재 문화재 복원은 다양한 자료와 전문가의 기술 및 역사적인 기록물 자료에 의존해 복구한다. 이러한 기법의 문화재 복원은 기록에 남길 수 있는 정보 수집의 효율적인 방법이 될 수 있다. 본 연구는 우리나라의 시대별 탑의 특징을 보여주며, 복원이 실제적이고도 구체적인 다각도의 방향에서 더 정밀하고 정확하게 도출하는데 기여할 것으로 기대된다.

  • PDF

Predicting Soccer Players' Wage Grades Using Big Data and Artificial Intelligence (빅데이터 및 인공지능을 활용한 축구선수 연봉등급 예측)

  • Hyeon-Seong Jeong;Jin-hwa Kim;Dae-Won Hyun
    • Journal of Industrial Convergence
    • /
    • v.22 no.8
    • /
    • pp.19-28
    • /
    • 2024
  • This study proposes a new method for predicting the wage grades of soccer players using big data and artificial intelligence. Predicting the salaries of soccer players is a crucial task that involves accurately assessing players' performance and potential, and reflecting this in their salaries to enhance the economic efficiency of the soccer industry. This research analyzes player ability data provided by FIFA 22 and employs various big data and artificial intelligence techniques to predict players' salary grades. Key methodologies used include decision trees, artificial neural networks, random forests, and boosting, which were utilized to compare the accuracy of the salary prediction models. The results show that the random forest and boosting methods exhibited the highest prediction accuracy. This study demonstrates the process and utility of using big data and artificial intelligence technologies to predict soccer players' salary grades, offering a new perspective on the soccer industry.

Simultaneous Optimization Model of Case-Based Reasoning for Effective Customer Relationship Management (효과적인 고객관계관리를 위한 사례기반추론 동시 최적화 모형)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.175-195
    • /
    • 2005
  • 사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다. 이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.

  • PDF

Locomotion of Crawling Robots Based on Reinforcement Learning and Meta-Learning (강화학습 기법과 메타학습을 이용한 기는 로봇의 이동)

  • Mun, Yeong-Jun;Jeong, Gyu-Baek;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.395-398
    • /
    • 2007
  • 최근 인공지능 분야에서는 강화학습(Reinforcement Learning)에 대한 관심이 크게 증폭되고 있으며, 여러 관련 분야에 적용되고 있다. 본 논문에서는 강화학습 기법 중 액터-크리틱 계열에 속하는 RLS-NAC 알고리즘을 활용하여 Kimura의 기는 로봇의 이동을 다룰 때에 중요 파라미터의 결정을 위하여 meta-learning 기법을 활용하는 방안에 고려한다.

  • PDF

A Study on the Dynamic Binary Fingerprint Recognition Method using Artificial Intelligence (인공지능기법을 이용한 동적 이진화 지문인식 방법에 관한 연구)

  • 강종윤;이주상;이재현;공석민;김동한;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.283-286
    • /
    • 2002
  • 자동화 지문인식을 위한 과정에서 지문영상의 정보를 보존하면서 최적의 세선화와 특이점추출을 위한 중요한 부분은 이진화 과정이다. 이진화 과정은 그레이-스케일 레벨의 영상을 0과 255값으로 바꾸는 과정이다. 이 과정에서 적절한 임계값(Threshold Value)을 설정해 주지 않으면 지문영상의 정보가 손실된다 본 논문에서는 이진화 과정 부분에 인공지능 기법을 적용하여 입력되는 지문영상에서 실시간으로 기준레벨(Threshold)을 추출하는 방법을 제안한다. 실험결과 기존의 방법과 비교하여 좋은 성능을 보여주고 있음을 나타낸다

Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots (재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술)

  • Choi, Jin-Tak;Kang, Kyung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF