최근 인공지능 스피커 시장이 성장하면서 사용자와 자연스러운 대화가 가능한 음성합성 기술에 대한 수요가 증가하고 있다. 따라서 다양한 음색의 목소리를 생성할 수 있는 다화자 음성합성 시스템이 필요하다. 자연스러운 음성을 합성하기 위해서는 대용량의 고품질 음성 DB로 학습하는 것이 요구된다. 그러나 많은 화자가 발화한 고품질의 대용량 음성 DB를 수집하는 것은 녹음 시간과 비용 측면에서 매우 어려운 일이다. 따라서 각 화자별로는 소량의 학습 데이터이지만 매우 많은 화자의 음성 DB를 사용하여 음성합성 시스템을 학습하고, 이로부터 다화자의 음색과 운율 등을 자연스럽게 표현하는 기술이 필요하다. 본 논문에서는 화자인식 기술에서 사용하는 딥러닝 기반 x-vector 기법을 적용하여 화자 인코더를 구성하고, 화자 인코더를 통해 소량의 데이터로 새로운 화자의 음색을 합성하는 기술을 제안한다. 다화자 음성합성 시스템에서 텍스트 입력에서 멜-스펙트로그램을 합성하는 모듈은 Tacotron2로, 합성음을 생성하는 보코더는 로지스틱 혼합 분포가 적용된 WaveNet으로 구성되어 있다. 학습된 화자 임베딩 신경망에서 추출한 x-vector를 Tacotron2에 입력으로 추가하여 원하는 화자의 음색을 표현한다.
시선추적 기술은 사회 다양한 분야에서 사용되고 있으며, 추적 기술의 정확성과 편리성 면에서 좋은 성능을 발휘하고 있다. 이는 터치를 하지 않고도 인터페이스(Interface)가 가능한 새로운 가능성을 보여주고 있고 할 수 있다. 이 기술은 루게릭 환자와 같이 신체의 한 부분, 한 부분이 서서히 마비되어 최종적으로는 눈을 움직일 수밖에 없는 상황의 환자에게 새로운 의사소통 방법이 될 수 있다. 이전의 루게릭 환자는 이 상황에 처하게 되면 가족 간의 의사소통은 물론, 죽음을 기다리는 것 외의 아무것도 할 수 없는 상황에 이를 수밖에 없었으나, 어렵지만 새로운 의사소통 방법인 눈을 이용한 인터페이스가 이들에게 도움이 될 수 있다. 현재로서도 시중에서는 시선추적 시스템과 전용 장비가 존재하나, 누워있는 이들에게는 사용법이 어렵거나, 개당 1200만원 이상의 높은 가격 등으로 인해 접근하기에 어려운 실정이다. 본 논문에서는 소수의 약자에게 도움을 줄 수 있음과 동시에 이 어려운 분들을 위해 저렴하게 사용할 수 있는 웨어러블 형태의 시선추적 장치를 제안하고 사회 전반의 미래 기술 성장 가능성을 극대화 하기 위해 저렴하게 이용할 수 있는 시선추적 방법을 연구하여, 결론적으로 저사양/고성능의 웨어러블 디바이스 기반 시선추적 시스템을 설계하고 발전시키는 방법을 제안하고자 한다.
최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.
최근 지능화된 사이버 위협이 지속적으로 증가함에 따라 기존의 패턴 혹은 시그니처 기반의 침입 탐지 방식은 새로운 유형의 사이버 공격을 탐지하는데 어려움이 있다. 따라서 데이터 학습 기반 인공지능 기술을 적용한 이상 징후 탐지 방법에 관한 연구가 증가하고 있다. 또한 지도학습 기반 이상 탐지 방식은 학습을 위해 레이블 된 이용 가능한 충분한 데이터를 필요로 하기 때문에 실제 환경에서 사용하기에는 어려움이 있다. 최근에는 정상 데이터로 학습하고 데이터 자체에서 패턴을 찾아 이상 징후를 탐지하는 비지도 학습 기반의 방법에 대한 연구가 활발히 진행되고 있다. 그러므로 본 연구는 시퀀스 로그 데이터로부터 유용한 시퀀스 정보를 보존하는 잠재 벡터(Latent Vector)를 추출하고, 추출된 잠재 벡터를 사용하여 이상 탐지 학습 모델을 개발하는데 있다. 각 시퀀스의 특성들에 대응하는 밀집 벡터 표현을 생성하기 위하여 Word2Vec을 사용하였으며, 밀집 벡터로 표현된 시퀀스 데이터로부터 잠재 벡터를 추출하기 위하여 비지도 방식의 오토인코더(Autoencoder)를 사용하였다. 개발된 오토인코더 모델은 시퀀스 데이터에 적합한 순환신경망 GRU(Gated Recurrent Unit) 기반의 잡음 제거 오토인코더, GRU 네트워크의 제한적인 단기 기억문제를 해결하기 위한 1차원 합성곱 신경망 기반의 오토인코더 및 GRU와 1차원 합성곱을 결합한 오토인코더를 사용하였다. 실험에 사용된 데이터는 시계열 기반의 NGIDS(Next Generation IDS Dataset) 데이터이며, 실험 결과 GRU 기반의 오토인코더나, 1차원 합성곱 기반의 오토인코더를 사용한 모델보다 GRU와 1차원 합성곱을 결합한 오토인코더가 훈련 데이터로부터 유용한 잠재 패턴을 추출하기 위한 학습 시간적 측면에서 효율적이었고 이상 탐지 성능 변동의 폭이 더 작은 안정된 성능을 보였다.
인공지능이 이미지 편집 기술에 적용되어 조작 흔적이 거의 없는 고품질 이미지를 생성할 수 있게 되었다. 그러나 이러한 기술들은 거짓 정보 유포, 증거 인멸, 사실 부인 등의 범죄 행위에 악용될 수 있기 때문에 이에 대응하기 위한 방안이 필요하다. 본 연구에서는 이미지 조작을 탐지하기 위해 이미지 파일 분석과 모바일 포렌식 아티팩트 분석을 수행한다. 이미지 파일 분석은 조작된 이미지의 메타데이터를 파싱하여 Reference DB와 비교분석을 통해 조작여부를 탐지하는 방법이다. Reference DB는 이미지의 메타데이터에 남는 조작 관련 아티팩트를 수집하는 데이터베이스로서, 이미지 조작을 탐지하는 기준이 된다. 모바일 포렌식 아티팩트 분석은 이미지 편집 도구와관련된 패키지를 추출하고 분석하여 이미지 조작을 탐지하도록 한다. 본 연구에서 제안하는 방법론은 기존의 그래픽적 특징기반 분석의 한계를 보완하고, 이미지 처리 기법과 조합하여 오탐을 줄일 수 있도록 한다. 연구 결과는 이러한 방법론이 디지털 포렌식 조사 및 분석에 유의미하게 활용될 수 있음을 보여준다. 또한, 조작된 이미지 데이터셋과 함께 이미지 메타데이터 파싱 코드와 Reference DB를 제공하여 관련 연구에 기여하고자 한다.
최근 환경 오염이 지속되면서 신재생 에너지에 대한 사람들의 관심이 높아지고 있다. 제주 지역은 태양광, 태양열, 바이오, 풍력 발전 등 신재생 에너지 발전이 많이 이루어지고 있지만, 그에 비하여 관련 데이터의 개방과 분석 사례는 부족한 상황이다. 이에 본 연구에서는 전 세계 데이터 사이언티스트(Data Scientists)들이 활동하고 있는 캐글(Kaggle) 플랫폼을 활용하여 태양광 생산량과 관련된 변수를 추출하고, 데이터에 적용할 수 있는 머신러닝(Machine Learning) 기법을 탐구하여 머신 러닝 설계를 위한 제주 지역의 태양광 발전 데이터셋(Dataset) 형태(Form)를 제시하고자 한다. 구체적으로는 캐글 데이터 플랫폼을 활용하여 태양광 에너지 분석을 진행한 후 제주 지역 태양광 데이터 수집에 대한 보완점을 제안할 수 있다. 이러한 시도는 제주 지역의 태양광 산업의 발전을 위한 데이터 분석에 활용이 가능할 것으로 기대할 수 있다. 즉, 현재 개방되어 있는 제주 지역의 태양광 발전 데이터셋 형태를 인공지능(Artificial Intelligent) 분석을 위한 머신러닝에 적합한 형태로 구축이 될 수 있도록 제안할 수 있다. 이를 통하여 제주 지역 태양광 산업의 발전의 효율을 높이는 방안을 마련하는데 기반 연구가 될 것이다.
기존의 공정방식에 비해 효율성이나 환경적 면에서 많은 장점을 가진 플라즈마 공정은 반도체 제작에서 널리 사용되고 있다. Plasma Sheath란 플라즈마 bulk와 그 것을 둘러싸고 있는 챔버 벽면과 전극 사이에서 관찰되는 어두운 영역으로 양이온과 전자의 이동속도 차이로 인해 발생한다. Plasma Sheath Monitoring Sensor (PSMS)는 플라즈마와 전극 사이의 전압(Voltage) 차이와 전극에 걸리는 RF power 등을 실시간으로 측정하는 센서로서 플라즈마 챔버 내에서 플라즈마의 상태와 매우 상관도가 높을 것으로 기대된다. 본 연구에서는 PSMS 데이터를 활용하여 플라즈마 챔버 내의 질소이온의 상태를 예측하는 모형을 딥러닝 기계학습 기법을 이용하여 구축하였다. 연구에 사용된 데이터는 파워와 압력을 달리 셋팅한 실험에서 측정된 PSMS 데이터를 학습데이터로 활용하고 플라즈마 bulk와 Si substrate에서 측정된 질소 이온의 비율, 플럭스, 밀도를 레이블로 활용하였다. 본 연구의 결과는 향후 플라즈마 공정의 최적화 및 실시간 정밀제어를 위한 인공지능 기술의 기초가 될 것으로 기대된다.
드론은 국토조사, 수송, 해양, 환경, 방재, 문화재, 건설 등 다양한 분야에서 활용되고 있다. 또한 사물인터넷(Internet of Things), 인공지능(Artificial Intelligence) 등과 관련하여 4차 산업 혁명의 핵심기술을 검증하고 적용시킬 수 있는 기술로 떠오르고 있다. 본 연구에서는 드론을 활용하여 균열을 자동으로 탐지할 수 있는 딥러닝 모델을 개발하고자 한다. 딥러닝 학습을 위한 이미지 데이터는 Mavic3 드론을 이용하여 수집하였고 촬영고도는 20m, ×7배율로 촬영하였다. 촬영 시 약 2m/s의 속도로 전진하여 영상을 찍고, 프레임을 추출하는 식으로 데이터를 수집하였다. 이런식으로 수집한 데이터를 통해 딥러닝 학습을 진행하였다. 본 연구에서는 딥러닝 학습모델로 Backbone으로는 Swin Transformer, Architecture로 UperNet을 사용하였다. 약 800장의 라벨링 된 데이터를 Augmentation기법으로 데이터 양을 증가시키고 3차에 걸쳐 학습을 진행하였다. 1차와 2차 학습 시 Cross-Entropy loss function을 사용하였고 3차 학습 시 Tversky Loss Function을 사용하였다. 학습결과, 균열 탐지와 균열율을 계산할 수 있는 모델을 개발하였다. 또한, 드론의 위치 정보를 이용해 특정 도로의 한 차선 균열율을 계산할 수 있는 모델을 개발하였다. 향후 추가적인 연구를 통하여 균열탐지모델의 고도화를 사물인터넷(IoT)과의 융합으로 이루었을 때 소파보수(Patching)나 포트홀(Pothole)의 탐지가 가능할 것으로 보인다. 또한 드론의 실시간 탐지 업무수행으로 포장 유지 보수구간에 대한 탐지를 신속하게 확보할 수 있을것으로 기대된다.
인공 지능 (AI), 특히 텍스트 생성 서비스 분야에서의 발전은 두드러지게 나타나고 있으며, AI-as-a-Service (AIaaS) 시장은 2028년까지 550억 달러에 달할 것으로 예상된다. 본 연구는 합성 텍스트 미디어 소프트웨어의 품질 요소를 탐구하였으며, 이를 위해 ChatGPT, Writesonic, Jasper, 그리고 Anyword와 같은 산업의 주요 서비스에 주목하였다. 소프트웨어 평가 플랫폼에서 수집된 4,000개 이상의 리뷰를 바탕으로, Gensim 라이브러리를 활용한 잠재 디리클레 할당 (LDA) 주제 모델링 기법을 적용하였다. 이 분석을 통해 11개의 주제가 도출되었다. 이후 이 주제들을 AICSQ 및 AISAQUAL과 같은 기존 논문에서 다루었던 AI 서비스 품질 차원과 비교 분석하였다. 리뷰에서는 가용성 및 효율성과 같은 차원이 주로 강조되었으며, 이전 연구에서 중요하게 여겨졌던 사람다움과 같은 요소는 본 연구에서 강조되지 않았다. 이러한 결과는 AI 서비스의 본질적 특성, 즉 사용자와의 직접적인 상호작용보다 의미론적 이해에 더 중점을 둔다는 특성 때문으로 해석된다. 본 연구는 단일 리뷰 원천 및 평가자들의 인구 통계의 특정성과 같은 잠재적 편향을 인정하며, 향후 연구 방향으로는 이러한 품질 차원이 사용자 만족도에 어떻게 영향을 미치는지, 그리고 개별 차원이 전체 평점에 어떻게 영향을 미치는지에 대한 깊은 분석을 제안한다.
텍스트 증강은 자연어처리 모델의 성능 향상을 목적으로 원본 텍스트의 변환, 생성을 통하여 새로운 증강 텍스트를 생성하는 방법론이다. 기존 연구된 기법들은 표현적 다양성 부족, 의미 왜곡 , 한정적인 양의 증강 텍스트와 같은 한계점이 존재한다. 거대언어모델과 few-shot learning을 활용한 텍스트 증강은 이러한 한계점의 극복이 가능하지만, 잘못된 생성으로 인한 노이즈 발생의 위험성이 존재한다. 본 논문에서는 여러 후보 텍스트를 생성하고 적합한 텍스트를 증강 텍스트로 선정하는 TAGS를 제안한다. TAGS는 기존 텍스트 few shot learning을 통해 다양한 표현을 생성하면서 대조 학습과 유사도 비교를 통해 원본 텍스트가 적더라도 적합한 데이터를 효과적으로 선정한다. 이를 텍스트 증강이 필수적인 업무용 챗봇 데이터에 적용하여 60배 이상의 양적 향상을 달성하였다. 또한 증강 텍스트의 질적 향상을 확인하기 위해 실제 생성된 텍스트를 분석하여 원본 텍스트에 비해 의미론적, 표현적으로 다양한 텍스트를 생성함을 확인하였으며, 증강 텍스트로 실제 분류 모델을 학습하고 실험하여 실질적으로 자연어처리 모델 성능 향상에 도움이 되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.