• 제목/요약/키워드: 인공 열화

Search Result 125, Processing Time 0.028 seconds

Estimation of Application of Artificially Deteriorated Silk by Ultraviolets for Conservation of Paintings on the Silk (견본 회화보존처리에 자외선 인공열화견의 적용성 평가)

  • Oh, Joon-Suk;Chun, Ji-Youn;Lim, In-Kyung
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 2011
  • A study was done to compare the properties of artificially deteriorated silk with ultraviolets for reinforcing of loss area of paintings on silk. Deteriorated surface of raw silk irradiated by long-wavelength ultraviolet(UV-A) than short-wavelength ultraviolet(UV-C) was similar to naturally aged raw silk. UV-A irradiation raw silk was slowly decreased in tensile tenacity and elongation and lowered in yellowness index than that of UV-C. Water content of UV-A irradiation raw silk than that of UV-C was higher. UV-A irradiation raw silk had no problem in dyeing and inpainting for conservation because of low yellowness index. UV-C irradiation raw silk was brittle, but UV-A irradiation raw silk was seemed to tough and similar to naturally aged raw silk. Korean painting conservator estimated that UV-A irradiation raw silk was more proper for reinforcing of loss area of paintings on silk than that of UV-C.

Study on Coloring and Aging Pattern of Bongchae used for Conservation Treatment of Paper Cultural Properties (지류문화재의 보채에 쓰이는 봉채의 채색 및 열화 양상 연구)

  • Song, Jung Won;Kim, Myoung Nam;Lee, Jang Jon
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.416-429
    • /
    • 2019
  • Bongchae is primarily employed for toning, which is the last step in the conservation treatment of paper's cultural properties. The objective of this study is to identify the coloring patterns of four types of Bongchae(Bonram, Gamboge, Yeonji, and Daeja) and determine the associated color change patterns through accelerated aging experiments. By examining the coloring patterns, it is observed that Yeonji, Bonram, and Daeja are painted as particles, whereas Gamboge indicates a close state of coating. Results obtained from X-ray diffraction analysis of Bongchae indicate that the presence of quartz, calcite, and pyrophyllite can be equally detected in Bonram, Yeonji, and Daeja. Additionally, the presence of goethite is also detected in Daeja. Gamboge becomes discolored from yellow to orange color during wet thermal aging, and Gamboge and Yeonji become decolorized during UV irradiation aging. Hence, cultural properties of paper colored with Gamboge can be predicted to become discolored to orange color by alkalis and can be darkened by UV rays because the decolorization of Gamboge and Yeonji occurs preferentially.

A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure (${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토)

  • Kim Young-Ki;Lee Byung-Sik;Lee Yong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.211-220
    • /
    • 2005
  • The concrete structure is being considered for the main engineered barrier of low and intermediate level radwaste disposal facility. Concrete of low permeability can minimize infiltration of water and effectively prevent release of nuclide to ecosystem. But if concrete degrades, structural stability of disposal structure will decrease while permeability increase, resulting in increased possibility of nuclide release due to water infiltration. Therefore disposal concrete structure degradation shall be minimized to maintain capacity of nuclide isolation. The typical causes of concrete structure degradation are sulfide attack, reinforcement corrosion due to chloride attack, leaching of calcium hydroxide, alkali-aggregate reaction and repeated freezing-thawing. The common cause of these degradation processes is infiltration of water or adverse chemicals into concrete. Based on the study of these degradation characteristics and mechanisms of concrete structure, the methodology of design and service life evaluation of concrete structure as an engineered barrier are reviewed to ensure its long-term durability.

  • PDF

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force (보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가)

  • Ryu, K.S.;Nahm, S.H.;Kim, Y.I.;Yu, K.M.;Son, D.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 1999
  • The integrity of the turbine rotors can be assessed by the coercive force and Vickers hardness of the aged rotors at service temperature. The coercive force measurement system was constructed in order to evaluate material degradation nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and then the seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. The coercive force of the test materials was measured at room temperature. Vickers hardness and coercive force decreased with the increase of degradation. The relationship between Vickers hardness and coercive force was investigated. The degradation of test material may be determined nondestructively by the relationship between Vickers hardness and coercive force.

  • PDF

Evaluation of Modulus of Elasticity of Wood Exposed to Accelerated Weathering Test by Measuring Ultrasonic Transmission Time (촉진 열화 목재의 초음파 전달 시간 측정을 통한 탄성 계수의 평가)

  • Park, Chun-Young;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • In this study, accelerated weathering test was performed with wood, a major material for wooden cultural building. In order to evaluate the deterioration of wood, ultrasonic transmission times were measured to evaluate dynamic modulus of elasticity (MOE), which was verified by determining static MOE using three-point bending test. Ultrasonic transmission time was decreased with an increase in the weathering time levels (0, 500, 1000 hours) while it increased in 1500 and 2000 hours. Distribution of dynamic and static MOE was similar to that of the ultrasonic transmission time measurements. The results mean that the measurement of ultrasonic transmission time was very effective to evaluate MOE of wooden cultural buildings for their preservation and management. This method could be utilized to assess wooden cultural buildings as a way of preserving them in a scientific manner.

The effect of air quality and humidity on aged characteristics of beeswax-treated paper during artificial aging (인공열화 시 공기질 및 습도가 밀랍지의 열화에 미치는 영향)

  • Yang, Eun Jeong;Choi, Kyoung Hwa;Kang, Yeong Seok;Cho, Jung hye;Jeong, Hye Young
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.45-55
    • /
    • 2012
  • A beeswax-treated paper has no air permeability but has the water repellency compared with a general Hanji. Because of these properties, the differences of the aging factors and mechanisms between the outer partition of beeswax-treated paper that is affected by the surrounding conservation environment and the inner partition of it that is not affected are bigger than general books. In this research, we analyzed and compared the aging characteristics through the accelerated aging of the beeswax-treated paper by some air and humidity conditions. The results of the physical and optical analysis after the artificial aging, it was shown that the oxygen accelerates the aging of the beeswax-treated paper and the condition with the humidity 50% RH is more stable than the condition with the humidity 0% RH. The results of the CG/MS analysis that was conducted to figure out the decomposition charateristics of the beeswax according to the air quality and the humidity, a low molecular weight compound that the number of carbon is C9-C20 including a fatty acid such as a palmitic acid was increased as the aging was progressed. However, under the same environment, a compound that the number of carbon is C21-C36 including a hydrocarbon and a aliphatic alcohol and a high molecular weight compound that the number of carbon is more than C34 including a wax ester were decreased. A rate of change according to the air quality and the humidity was similar to the beeswax-treated papers.

  • PDF

Changes in IR Spectra of Ambers with Accelerated Aging (가속열화 시 호박 IR 특성의 경시적 변화)

  • Park, Jongseo;Lim, Yujin
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.247-256
    • /
    • 2012
  • Amber has been used as gemstones and artifacts from the period of the Three Kingdoms or earlier, which are discovered in the process of excavation now. It is, however, very difficult to discuss the importing route and circulation of amber because there are no informations available on the provenance. In this study, we acquired the IR spectra of ambers originating from 5 different locations. We also monitored the change of characteristic IR peaks by artificially aging the ambers under heat, light and heat with oxygen, respectively. As the aging proceeded, the intensity of C=O band and O-H band increased, however, the bands related with C=C bond decreased. There needed some modifications in the discerning scheme because some peak disappeared with aging; yet, it was still possible to discern different ambers largely. Therefore, it is expected that the scheme can be used practically by appraising its applicability to the real amber relics excavated.

Determination of an Test Condition for IR Thermography to Inspect a Wall-Thinning Defect in Nuclear Piping Components (원전 배관 감육 결함 검사를 위한 IR 열화상시험 조건 결정)

  • Kim, Jin-Weon;Yun, Won-Kyung;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • This study conducted infrared (IR) thermography tests using pipe and plate specimens with artificial wall-thinning defects to find an optimal condition for IR thermography test on the wall-thinned nuclear piping components. In the experiment halogen lamp was used to heat the specimens. The distance between the specimen and the lamp and the intensity of halogen lamp were regarded as experimental parameter. When the distance was set to 1~2 m and the lamp intensity was above 60 % of full power, a single scanning of IR thermography detected all artificial wall-thinning defects, whose minimum dimension was $2{\Theta}=90^{\circ}$, d/t=0.5, and $L/D_o=0.25$, within the pipe of 500 mm in length. Regardless of the distance between the specimen and the lamp, the image of wall-thinning defect in IR thermography became distinctive as the intensity of halogen lamp increased. The detectability of IR thermography was similar for both plate and pipe specimens, but the optimal test condition for IR thermography depended on the type of specimen.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.