• 제목/요약/키워드: 인공 신경망 제어

검색결과 137건 처리시간 0.023초

인공신경망을 이용한 플러그인 하이브리드 차량의 동력분배제어전략 개발 (Development of Power Distribution Control Strategy for Plug-in Hybrid Electric Vehicle using Neural Network)

  • 심규현;이수지;이지석;남궁철;한관수;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.18-24
    • /
    • 2015
  • The plug-in hybrid electric vehicle has a high fuel economy and can be driven long distances. Its different modes include the electric vehicle, hybrid electric vehicle, and only engine operating mode. A power management strategy is important to determine which mode should be selected. The strategy makes the vehicle more efficient using appropriate power sources for driving. However, the strategy usually needs a driving speed profile which is future driving cycle. If the profile is known, the strategy easily determines which mode is driven efficiently. However, it is difficult to estimate the speed profile for a real system. To address this problem, this paper proposes a new power distribution strategy using a neural network. The average speed and driving range are used as input parameters to train the neural network system. The strategy determines a limit for the use of the battery and the desired power is distributed between the engine and the motor simultaneously. Its fuel economy can increase by improving the basic strategy.

압축강도 기반의 콘크리트 품질관리를 위한 웹 전산모델 개발 (Numerical Web Model for Quality Management of Concrete based on Compressive Strength)

  • 이군재;김학영;이혜진;황승현;양근혁
    • 한국건축시공학회지
    • /
    • 제21권3호
    • /
    • pp.195-202
    • /
    • 2021
  • 콘크리트의 품질관리는 주로 압축강도의 예측과 제어를 뜻한다. 이를 위해 관련 업계에서는 콘크리트 배합설계 및 재령별 강도에 관한 상당수의 데이터베이스를 구축하고 있으나, 기술유출 등의 이유로 공유되지 못해 결과적으로 품질관리를 위한 비용과 노력은 과도하게 낭비되고 있다. 본 연구에서는 웹 기반 전산모델 프로그램을 개발하여 사용자에게 콘크리트의 강도 예측 결과를 비롯한 다양한 최적 값을 제시하고, 사용자가 입력한 배합특성과 결과는 다시 DB로 수집될 수 있도록 유도하는 지속가능한 DB 수집 시스템을 구축한다. 해당 프로그램은 콘크리트 관련 전반적 기술을 다루고 있으며, 특히 압축강도의 예측은 다수의 DB를 기반으로 모델링된 인공신경망 기법을 적용하여 평균 89.2% 수준의 정확도에서 예측 값을 제공한다.

이중외피 건물 난방시스템의 발정제어 및 가변제어를 위한 최적로직의 개발 및 성능평가 (Development and Performance Evaluation of Optimal Control logics for the Two-Position- and Variable-Heating Systems in Double Skin Facade Buildings)

  • 백용규;문진우
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.71-77
    • /
    • 2014
  • This study aimed at developing and evaluating performance of the two logics for respectively operating two-position- and variable-heating systems. Both logics control the heating system and openings of the double skin facade buildings in an integrated manner. Artificial neural network models were applied for the predictive and adaptive controls in order to optimally condition the indoor thermal environment. Numerical computer simulation methods using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) were employed for the performance tests of the logics in the test module. Analysis on the test results revealed that the variable control logic provided more comfortable and stable temperature conditions with the increased comfortable period and the decreased standard deviation from the center of the comfortable range. In addition, the amount of heat supply to the indoor space was significantly reduced by the variable control logic. Thus, it can be concluded that the optimal control method using the artificial neural network model can work more effectively when it is applied to the variable heating systems.

깊은 신경망 기반 음원 추적 기법 (Sound Source Localization Method Based on Deep Neural Network)

  • 박희문;정종대
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1360-1365
    • /
    • 2019
  • 본 논문은 모바일 로봇과 자동제어 시스템에 적용될 수 있는 음원 위치 추적 시스템(Sound Source Localization, SSL)을 보여준다. 대부분 SSL의 기법은 음원 도달 시간차(Interaural Time Difference, ITD)와 음압 레벨의 차이(Interaural Level Difference, ILD)를 구하고, 마이크로폰 배열의 기하학적 원리를 이용하여 위치를 찾게 된다. 하지만 본 논문에서는 음원의 수평 각도를 구하기 위해 깊은 인공 신경망을 기반으로 한 다른 접근법은 제안한다. 인간의 귀를 모방한 로봇의 양쪽 마이크로폰에서 음원의 신호를 채집하여 연구에 사용했다. Network를 학습시키기 위해 양쪽 마이크로폰에서 얻어진 음원의 스펙트럼 분포 차이를 이용하였다. 각 10도 마다 채집한 데이터로 네트워크를 학습시켰고 임의의 각도에서 얻어진 데이터로 결과를 확인했다. 실험 결과 제안한 SSL의 접근 방식은 상당히 가능성이 있는 결과를 보여주었다.

인공지능형 삼차원 Foot Scanning 시스템에 관한 연구 (A Study on the Intelligent 3D Foot Scanning System)

  • 김영탁;박주원;탁한호;이상배
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.871-877
    • /
    • 2004
  • 본 논문은 맞춤형 신발제작을 위하여 신발에 필요한 화형제작용 데이터를 3차원 측정 장치를 통해 획득한 발의 형상을 인공지능 기법을 기반으로 하는 최적화된 형상을 복원하는 방법을 제시하고자 한다. 본 연구를 위해 개발된 시스템은 PC를 기반으로 하는 기존의 3차원측정 방식을 이용하여 상, 하, 좌, 우로 각각 장착된8대의 CCD 카메라와 4대의 laser를 통해 화형 및 발의 형상 데이터를 획득한다. 획득된 데이터들은 인공지능 기법을 이용한 영상처리 알고리즘으로 처리되며, 처리 결과는 기존의 지능 기법을 도입하지 않은 시스템에 비해 노이즈제거 특성이 향상되었고, 후처리과정을 간소화 할 수 있다. 따라서 본 논문에서는 3차원 측정을 위해 하드웨어적인 부분과 이를 제어하기 위한 소프트웨어 및 GUI로 전체 시스템을 구성하고, 본 논문에서는 데이터 처리용 소프트웨어에서 입력영상의 전처리 과정 중 영상의 이진화 단계에서 임계값을 결정하기 위하여 신경망을 사용하였으며, 이에 대한 결과를 제시하고자 한다.

자이로 센서와 인공신경망을 이용한 장애인용 컴퓨터 (Computer Interface for the Disabled Using Gyro-sensors and Artificial Neural Network)

  • 안용식;엄광문;김철승;허지운;나유진
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.411-419
    • /
    • 2003
  • 본 연구에서는 교통사고나 뇌졸중 등에 의해 상지의 장애를 가지는 장애인을 대상으로 하여, 인터넷의 브라우저와 같은 소프트웨어를 사용 할 수 있도록 하는 컴퓨터 인터페이스를 구현하는 것을 목적으로 한다. 이 인터페이스는 커서를 제어하기 위해 머리 움직임의 정보를 이용한다. 실제 시스템은 머리의 수평, 수직 각속도를 검출하여 컴퓨터로 전송하는 하드웨어부분과, 전송 받은 신호를 처리하여 마우스의 움직임과 클릭신호로 변환하는 소프트웨어 부분으로 구성하였다. 클릭신호는 순간적인 끄덕임으로 정의하였으며 특히, 인공신경망이 각 사용자별 클릭 패턴을 학습하여 사용자 친화적인 인터페이스를 제공하도록 하였다. 구현된 시스템의 성능을 클릭의 인식률, 커서의 이동제어오차, 이동출현하는 목표박스의 단위시간당 클릭율의 세가지 항목으로 평가하였다. 또한. 일반적으로 사용되는 광마우스와 본 연구에서 개발한 자이로마우스를 각각 이 실험에 사용하여, 양자간의 차이를 비교하였다. 개발된 자이로마우스에서 클릭의 인식률은 평균 93%였고, 커서의 수평수직 이동 제어오차는 광마우스의 1.4∼1.5배였다. 랜덤위치에 출현하는 50픽셀의 목표박스의 클릭률은 광마우스의 40% (30 클릭/분)의 성능을 보였으며, 시행횟수에 따라 증가하여 l회차의 35%에서 3회차에는 44%로 단조증가하는 경향을 보였다. 제안된 시스템은, 장애인에게 사회와 의사소통 할 수 있는 새로운 가능성을 제시할 것이 기대된다.

하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구 (Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System)

  • 김관형;강성인
    • 한국정보통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.1379-1386
    • /
    • 2005
  • 현재 산업현장에서 활용하는 용접용 로봇은 대부분 오프라인(off-line)으로 작업을 수행하고 있어 생산성과 용접 품질 향상에 그 기능을 충분하게 발휘하지 못하는 실정이다. 현재에는 용접 품질 향상을 위하여 용접 매카니즘이 많이 연구되어 많은 수학적인 해석과 물리적인 해석방법을 도입하여 비선형적인 용접 메카니즘을 연구하고 있다. 이러한 여러 가지 비선형적인 문제와 해석상의 어려움에도 불구하고 용접의 결함을 보완하기 위해 보다 정확한 용접데이터를 생성하기 위하여 고감도의 센서를 도입하여 신호처리 하고 있으며, 이를 이용하여 용접시스템에 포함시키는 피드백제어시스템(feed-back control system)을 구성하여 용접선 추적 및 용접 비드(bead) 형상제어에 응용하고 있다. 또한, 최근에는 인공지능제어기술이 발달되어 인간의 학습능력과 의사결정능력을 대신하는 신경회로망(neural network)과 퍼지이론(fuzzy logic)을 도입하여 용접기술을 개발하고 발전시키고 있다. 본 연구에서는 신경회로망이론을 이용하여 실시간으로 용접시스템을 모니터링하고 퍼지제어기에 의하여 용접결함을 보정하는 지능시스템을 개발방법을 제시하고자 한다.

GRU기반 전력사용량 예측을 적용한 스마트 미터기 구현 (Implementation of Smart Meter Applying Power Consumption Prediction Based on GRU Model)

  • 이지영;선영규;이선민;김수현;김영규;이원섭;심이삭;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.93-99
    • /
    • 2019
  • 본 논문에서는 효율적 에너지 관리를 위해 인공 신경망 중 하나인 GRU 모델을 사용하여 전력사용량을 예측하고 예측된 전력사용량과 실제 전력사용량의 비교를 통해 부하를 자동 제어 하는 스마트 미터기를 제안한다. 제안한 스마트 미터기를 통해 GRU 모델을 학습시키기 위해 필요한 전력사용량 데이터를 수집했다. 구현된 스마트 미터기가 전력사용량 자동측정 및 실시간 관찰 기능과 전력사용량 예측을 통한 부하 제어 기능을 가지고 있음을 보여준다. 성능평가 지표 중 하나인 Root Mean Squared Error (RMSE) 값에 약 20%의 마진 값을 이용하여 부하 자동 제어를 위한 기준 값으로 설정했다. 부하 자동 제어 기능을 가진 스마트 미터기로 인해 에너지 관리의 효율성이 증대되는 것을 확인하였다.

고체-유체 연성력 제어를 위한 진화적 최적설계 (Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force)

  • 김현수;이영신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF

자동차 부품 고장 진단에 관한 연구

  • 오재웅;한창수;이호택;신준;모종운;국두윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.144-148
    • /
    • 2001
  • 자동차의 발전과 함께 유지 보수를 위한 사용자의 요구는 급증하고 있으나 정비사의 부족으로 인해 경제성 및 신속성 등 이 문제가 되고 있고 이를 해결하기 위해 현재 개발되고 있는 장치들은 대부분 전자 제어 유닛에서 발생시키는 신호를 분석하거나 운전자와의 대화를 통하여 진단하는 방식으로 고장으로 인한 소음이나 진동등 운전자들의 주관적인 평가대상에 대해서는 적절한 해결책으로 제시해 주지 못하고 있다. 그러므로 계측에 의한 소음과 진동 데이터를 이용하여 전문가의 판단을 가지고 고장의 원인을 규명하며 운전자를 위한 오디오적인 표현을 해 줄 수 있는 진단 전문가 시스템이 필요하게 되었다. 본 논문에서는 자동차의 여러 단품중 쇼크 옵서버와 에어컨에 대하여 소음 진동 현상의 정상 및 이상 증상과 신호 계측 방법을 연구하였고 계측된 신호에 대해 패턴 화하여 인공 신경 회로망과 퍼지 추론을 통한 진단을 할 수 있는 알고리즘을 개발하였으며 차후 계속되는 연구에 사용될 정상 및 이상신호에 대한 기본적인 데이터 베이스를 구축하였다.