• Title/Summary/Keyword: 인공토

Search Result 592, Processing Time 0.035 seconds

A study on the ecological lightweight aggregates made of bottom ashes and dredged soils (저회 및 준설토를 이용한 에코인공경량골재의 제조에 관한 연구)

  • Jeon, Hye-Jin;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.133-137
    • /
    • 2007
  • Ecological lightweight aggregates were made in order to recycle the dredged soils from the seaside construction area and the bottom ashes from the power plant. Various physical and chemical analysis were performed on them to identify their possibility for applying lightweight concrete fields. Lightweight aggregates were made of bottom ashes and dredged soils from Yongheung Island which is located 20km west away from Seoul, and all the raw materials were milled before mixing. The physical and chemical properties such as density, absorption rate, stability, alkali latency reaction, heavy metal leaching of the lightweight aggregates were tested and analysed by following the KS standard procedures. From the size analysis, the coarse aggregates showed a suitable fit on standard particle ranges; however, the fine aggregates showed a large deviation from the standard. The absorption rates were increased with decreasing weight of the aggregates. All the aggregates were turned out to be safe by the stability and heavy metal leaching test; however, some of the aggregates were confirmed on the border of harmless and possibly harmful region through the alkali latency reactivity test.

Principal component analysis based frequency-time feature extraction for seismic wave classification (지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출)

  • Min, Jeongki;Kim, Gwantea;Ku, Bonhwa;Lee, Jimin;Ahn, Jaekwang;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.687-696
    • /
    • 2019
  • Conventional feature of seismic classification focuses on strong seismic classification, while it is not suitable for classifying micro-seismic waves. We propose a feature extraction method based on histogram and Principal Component Analysis (PCA) in frequency-time space suitable for classifying seismic waves including strong, micro, and artificial seismic waves, as well as noise classification. The proposed method essentially employs histogram and PCA based features by concatenating the frequency and time information for binary classification which consist strong-micro-artificial/noise and micro/noise and micro/artificial seismic waves. Based on the recent earthquake data from 2017 to 2018, effectiveness of the proposed feature extraction method is demonstrated by comparing it with existing methods.

An Enhanced Influence Map with Unit Intransitive Relationship for A.I. of Stratrgy Games (전략 게임 인공지능을 위한 유닛(unit) 상성 정보를 고려한 영향력 분포도(influence map))

  • Park, Jin-Hong;Park, Gyo-Hyeon;Yun, Tae-Bok;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • 전략 게임은 여러 종류의 유닛 (Unit)이 존재한다. 각각의 유닛은 특정 유닛에 대해 강한 면모를 보이기도 하고, 또 다른 종류의 유닛에게는 약한 면모를 가지고 있다. 이를 유닛간의 상성이라고 한다. 상성은 전략적 선택을 하는데 기반이 되고, 심리전을 유발하여 보다 게임에 몰입할 수 있게 해준다. 게임 인공지능이 상성을 고려하도록 하기 위해 각각의 유닛 간에 수치화된 상성 정보가 필요하다. 그리고 생성된 수치 자료를 토대로 유닛의 행동방법을 결정할 인공 지능도 필요하게 된다. 다음 행동 및 이동을 위해 주로 사용되는 방법은 영향력 분포도(influence map)이다. 영향력 분포도는 자신과 상대방의 세력을 수치적으로 파악하는 것이다. 하지만 일반적인 형태의 영향력 분포도로는 각 유닛간의 상성을 표현하기 힘들다. 따라서 본 논문에서는 영향력 분포도를 상성에 맞게 보정할 수 있는 방법을 제시하여 인공지능이 지능적인 행동을 하도록 돕는 방법을 제안한다. 이를 길 찾기 문제에 적용하여 전략적 이동경로를 선택하는 방법을 제시하였다.

  • PDF

Automatic classification for man-made object image and natural object image (인공객체영상 및 자연객체영상에서 대한 자동 분류)

  • 구경모;박창민;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.330-333
    • /
    • 2003
  • 영상 분류는 내용기반 영상검색에서 부적절한 이미지를 효과적으로 걸러 낼 수 있게 하여 영상 검색의 성능을 향상 시키는데 큰 역할을 하게 된다. 따라서 최근 의미 있는 영상의 분류가 내용기반검색분야에서 중요한 과제로 대두되고 있다. 본 논문에서는 에지 정보를 이용해서 객체 영상을 인공객체영상과 자연객체영상으로 분류하는 방법을 제안한다. 직선형태의 에지를 많이 가지는 인공객체의 경우 에지 방향 히스토그램의 에너지가 자연객체에 비해 높은 값을 가지기 때문에 객체 분류에 유용한 정보로서 에지 정보를 활용하였다. 또한 에너지 값을 낮추는 원형의 에지가 인공객체영상에서 주로 발견되는 점을 이용하여, 제거에 의해 분류의 성능을 높이고자 하였다. 한편 가버 필터를 이용한 분류 결과에 비해 에지 정보를 이용한 분류가 성능 면에서 보다 나은 결과를 얻을 수 있었다.

  • PDF

Construction of Magnetic Torquer For Attitude Control of Satellite (인공위성 자세제어용 마그네틱 토커의 제작)

  • 가은미;손대락
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.134-135
    • /
    • 2002
  • 모든 인공 위성이 궤도 올라가서 정확한 업무를 수행하기 위해서는 정확한 위치 정보와 안정된 자세제어 시스템을 필요로 한다. 궤도에 올라간 후 안정된 자세를 잡기 위해서는 위성체의 덤블링 방지해야되므로 초기 자세제어가 매우 중요하다. 그리고, 안정된 제도에 도달하여 자세를 잡기 의해서는 정확한 자세 정보와 자세를 조절하는 장치가 필요하며, 이를 얻기 위해서 thruster, momentum wheel, 마그네틱 토커, 마그네토미터 등과 같은 장치들이 사용되어진다. (중략)

  • PDF

Understanding of Generative Artificial Intelligence Based on Textual Data and Discussion for Its Application in Science Education (텍스트 기반 생성형 인공지능의 이해와 과학교육에서의 활용에 대한 논의)

  • Hunkoog Jho
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • This study aims to explain the key concepts and principles of text-based generative artificial intelligence (AI) that has been receiving increasing interest and utilization, focusing on its application in science education. It also highlights the potential and limitations of utilizing generative AI in science education, providing insights for its implementation and research aspects. Recent advancements in generative AI, predominantly based on transformer models consisting of encoders and decoders, have shown remarkable progress through optimization of reinforcement learning and reward models using human feedback, as well as understanding context. Particularly, it can perform various functions such as writing, summarizing, keyword extraction, evaluation, and feedback based on the ability to understand various user questions and intents. It also offers practical utility in diagnosing learners and structuring educational content based on provided examples by educators. However, it is necessary to examine the concerns regarding the limitations of generative AI, including the potential for conveying inaccurate facts or knowledge, bias resulting from overconfidence, and uncertainties regarding its impact on user attitudes or emotions. Moreover, the responses provided by generative AI are probabilistic based on response data from many individuals, which raises concerns about limiting insightful and innovative thinking that may offer different perspectives or ideas. In light of these considerations, this study provides practical suggestions for the positive utilization of AI in science education.

Site Selection Method by AHP-based Artificial Neural Network Model for Groundwater Artificial Recharge (AHP 기반의 인공신경망 모델을 활용한 지하수 인공함양 후보지 선정 방안)

  • Kim, Gyoo-Bum;Choi, Myoung-Rak;Seo, Min-Ho
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.741-753
    • /
    • 2018
  • Local drought in South Korea has recently increased interest in the efficient use of groundwater and then induces a growing need to introduce artificial recharge of groundwater that stores water in sedimentary layer. In order to evaluate the potential artificial recharge sites in the alluvial basins in Chungcheongnamdo province, an AHP (Analytical hierarchy process) model consisting of three primary and seven secondary factors was developed in this study. In the AHP model, adding candidate sites changes final evaluation score through a mathematical calculation process. By contrast ANN (Artificial neural network) model always provides an unchanged score for each candidate area. Therefore, the score can be used as a selection criterion for artificial recharge sites. It is concluded that the possibility of artificial recharge is relatively low if the score of the ANN model is less than about 1.5. Further studies and field surveys on the other regions in Korea will lead to draw out a more applicable ANN model.

Development of Convergence Educational Program Using AI Platform: Focusing on Environmental Education for Grades 5-6 (인공지능 플랫폼을 활용한 융합수업안 개발 : 5-6학년 환경교육을 중심으로)

  • Choi, Heyoungyun;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.213-221
    • /
    • 2021
  • With the advent of the 4th industrial revolution, the need for artificial intelligence education has increased. The online learning environment caused by COVID-19 made it possible to use variety of artificial intelligence platforms. In this study, an aritificial intelligence class plan was developed and proposed to achieve the goal of artificial intelligence education using an AI platform. The AI platform used is AI for Oceans, With the theme of creating a program for the environment, designed a 6-hour project class using Novel Engineering-based on STEAM model. Students experience AI for Oceans enough time and learn supervised learning by experience. Based on understanding of supervised learning, students design their own programs for the environment using Entry's AI blocks. In this study, for AI convergence education, this lesson was developed and presented with the goal of acquiring the creative problem solving ability and integrated thinking ability by using the principles of artificial intelligence to solve problems.

  • PDF

Constructive Artificial Intelligence (구성적 인공지능)

  • Park Choong Shik
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2004
  • I think constructivism can be considered as the new count proposal for understanding human to Cartesian rationalism. Constructivism has the common area not only with recent results of evolutionary biology, evolutionary psychology. brain science, system theory, and complex adaptive system but also with recent trends of humanities, and social science. In artificial intelligence, the studies which can be considered as constructivistic methods is going on. In this paper, from a constructivistic pint of view, to broaden the concept of intelligence in artificial intelligenve, I will examine constructivistic methodologies to intelligent machine and look about the artificial intelligence techniques which are constructivistic. Throughout such a discussion I want to promote the integral understanding of various kinds of mind theories and techniques, and pave the way of general intelligence in artificial intelligence.

  • PDF

POC : Establishing Dataset for Artificial Intelligence-based Crack Detection (POC : 인공지능 기반 균열 탐지를 위한 데이터셋 구축)

  • Kim, Ji-Ho;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.45-48
    • /
    • 2022
  • 건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.

  • PDF