• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.029 seconds

Verification of VIIRS Data using AIS data and automatic extraction of nigth lights (AIS 자료를 이용한 VIIRS 데이터의 야간 불빛 자동 추출 및 검증)

  • Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.104-105
    • /
    • 2023
  • 해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.

  • PDF

A Morpheme Analyzer based on Transformer using Morpheme Tokens and User Dictionary (사용자 사전과 형태소 토큰을 사용한 트랜스포머 기반 형태소 분석기)

  • DongHyun Kim;Do-Guk Kim;ChulHui Kim;MyungSun Shin;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.19-27
    • /
    • 2023
  • Since morphemes are the smallest unit of meaning in Korean, it is necessary to develop an accurate morphemes analyzer to improve the performance of the Korean language model. However, most existing analyzers present morpheme analysis results by learning word unit tokens as input values. However, since Korean words are consist of postpositions and affixes that are attached to the root, even if they have the same root, the meaning tends to change due to the postpositions or affixes. Therefore, learning morphemes using word unit tokens can lead to misclassification of postposition or affixes. In this paper, we use morpheme-level tokens to grasp the inherent meaning in Korean sentences and propose a morpheme analyzer based on a sequence generation method using Transformer. In addition, a user dictionary is constructed based on corpus data to solve the out - of-vocabulary problem. During the experiment, the morpheme and morpheme tags printed by each morpheme analyzer were compared with the correct answer data, and the experiment proved that the morpheme analyzer presented in this paper performed better than the existing morpheme analyzer.

Deep Learning-Based Personalized Recommendation Using Customer Behavior and Purchase History in E-Commerce (전자상거래에서 고객 행동 정보와 구매 기록을 활용한 딥러닝 기반 개인화 추천 시스템)

  • Hong, Da Young;Kim, Ga Yeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.237-244
    • /
    • 2022
  • In this paper, we present VAE-based recommendation using online behavior log and purchase history to overcome data sparsity and cold start. To generate a variable for customers' purchase history, embedding and dimensionality reduction are applied to the customers' purchase history. Also, Variational Autoencoders are applied to online behavior and purchase history. A total number of 12 variables are used, and nDCG is chosen for performance evaluation. Our experimental results showed that the proposed VAE-based recommendation outperforms SVD-based recommendation. Also, the generated purchase history variable improves the recommendation performance.

Zero-shot Korean Sentiment Analysis with Large Language Models: Comparison with Pre-trained Language Models

  • Soon-Chan Kwon;Dong-Hee Lee;Beak-Cheol Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.43-50
    • /
    • 2024
  • This paper evaluates the Korean sentiment analysis performance of large language models like GPT-3.5 and GPT-4 using a zero-shot approach facilitated by the ChatGPT API, comparing them to pre-trained Korean models such as KoBERT. Through experiments utilizing various Korean sentiment analysis datasets in fields like movies, gaming, and shopping, the efficiency of these models is validated. The results reveal that the LMKor-ELECTRA model displayed the highest performance based on F1-score, while GPT-4 particularly achieved high accuracy and F1-scores in movie and shopping datasets. This indicates that large language models can perform effectively in Korean sentiment analysis without prior training on specific datasets, suggesting their potential in zero-shot learning. However, relatively lower performance in some datasets highlights the limitations of the zero-shot based methodology. This study explores the feasibility of using large language models for Korean sentiment analysis, providing significant implications for future research in this area.

Improving prediction performance of network traffic using dense sampling technique (밀집 샘플링 기법을 이용한 네트워크 트래픽 예측 성능 향상)

  • Jin-Seon Lee;Il-Seok Oh
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.24-34
    • /
    • 2024
  • If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.

LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing (LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술)

  • Hyeon-Beom Heo;Hye-Ri Yang;Sung-Uk Jung;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • Facial recognition technology is widely used in various fields but faces challenges due to its vulnerability to fraudulent activities such as photo spoofing. Extensive research has been conducted to overcome this challenge. Most of them, however, require the use of specialized equipment like multi-modal cameras or operation in high-performance environments. In this paper, we introduce LH-FAS v2 (: Lightweight Head-pose-based Face Anti-Spoofing v2), a system designed to operate on a commercial webcam without any specialized equipment, to address the issue of facial recognition spoofing. LH-FAS v2 utilizes FSA-Net for head pose estimation and ArcFace for facial recognition, effectively assessing changes in head pose and verifying facial identity. We developed the VD4PS dataset, incorporating photo spoofing scenarios to evaluate the model's performance. The experimental results show the model's balanced accuracy and speed, indicating that head pose estimation-based facial anti-spoofing technology can be effectively used to counteract photo spoofing.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Evaluation of Diagnostic Usefulness of Thyroid Lesions of Deep Learning-based CAD System (딥러닝을 기반으로 한 CAD 시스템의 갑상샘 질환의 진단 유용성)

  • Chae Won Kang;Hyo Yeong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.551-556
    • /
    • 2024
  • This study aims to evaluate the diagnostic concordance and accuracy by comparing thyroid lesions diagnosed with the artificial intelligence-based computer-aided diagnosis (CAD) system, S-DetectTM, to the results of fine-needle aspiration biopsy(FNAB). A retrospective study was conducted involving 60 patients at N Hospital in Gyeongnam from May 2023 to September 2023. The study used S-DetectTM to analyze ultrasound findings and malignancy risk of thyroid nodules and compared these findings with FNAB results to determine accuracy. The study assessed the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of S-DetectTM and evaluated the diagnostic concordance between the two methods using Kappa analysis. S-DetectTM demonstrated a sensitivity of 90.5%, specificity of 83.2%, accuracy of 88.3%, PPV of 80.7%, and NPV of 92.7%. The Kappa value for diagnostic agreement between S-DetectTM and FN AB was 0.719 (p<0.05), indicating a high level of agreement between the methods. Therefore, the CAD system S-DetectTM proves valuable in distinguishing between malignant and benign thyroid lesions and could reduce unnecessary tissue examinations when used appropriately before thyroid fine-needle aspiration.

Transfer Learning-based Object Detection Algorithm Using YOLO Network (YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘)

  • Lee, Donggu;Sun, Young-Ghyu;Kim, Soo-Hyun;Sim, Issac;Lee, Kye-San;Song, Myoung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.219-223
    • /
    • 2020
  • To guarantee AI model's prominent recognition rate and recognition precision, obtaining the large number of data is essential. In this paper, we propose transfer learning-based object detection algorithm for maintaining outstanding performance even when the volume of training data is small. Also, we proposed a tranfer learning network combining Resnet-50 and YOLO(You Only Look Once) network. The transfer learning network uses the Leeds Sports Pose dataset to train the network that detects the person who occupies the largest part of each images. Simulation results yield to detection rate as 84% and detection precision as 97%.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.