• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.03 seconds

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2021
  • In this paper, we suggest the Deep Neural Network Model System for predicting results of the match of 'League of Legends (LOL).' The model utilized approximately 26,000 matches of the LOL game and Keras of Tensorflow. It performed an accuracy of 93.75% without overfitting disadvantage in predicting the '2020 League of Legends Worlds Championship' utilizing the real data in the middle of the game. It employed functions of Sigmoid, Relu and Logcosh, for better performance. The experiments found that the four variables largely affected the accuracy of predicting the match --- 'Dragon Gap', 'Level Gap', 'Blue Rift Heralds', and 'Tower Kills Gap,' and ordinary users can also use the model to help develop game strategies by focusing on four elements. Furthermore, the model can be applied to predicting the match of E-sports professional leagues around the world and to the useful training indicators for professional teams, contributing to vitalization of E-sports.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.

Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling (다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교)

  • Yoo, Seung-Tae;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • According to the recent change in the cybersecurity paradigm, research on anomaly detection methods using machine learning and deep learning techniques, which are AI implementation technologies, is increasing. In this study, a comparative study on data preprocessing techniques that can improve the anomaly detection performance of a GRU (Gated Recurrent Unit) neural network-based intrusion detection model using NGIDS-DS (Next Generation IDS Dataset), an open dataset, was conducted. In addition, in order to solve the class imbalance problem according to the ratio of normal data and attack data, the detection performance according to the oversampling ratio was compared and analyzed using the oversampling technique applied with DCGAN (Deep Convolutional Generative Adversarial Networks). As a result of the experiment, the method preprocessed using the Doc2Vec algorithm for system call feature and process execution path feature showed good performance, and in the case of oversampling performance, when DCGAN was used, improved detection performance was shown.

A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and OpenPose (YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구)

  • Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.735-740
    • /
    • 2022
  • The construction is the industry with the highest fatalities, and the fatalities has not decreased despite various institutional improvements. Accordingly, real-time safety management by applying artificial intelligence (AI) to CCTV images is emerging. Although some research on worker detection by applying AI to images of construction sites is being conducted, there are limitations in performance expression due to problems such as complex background due to the nature of the construction industry. In this study, the YOLO model and the OpenPose model were fused to improve the performance of worker detection and posture estimation to improve the detection performance of workers in various complex conditions. This is expected to be highly useful in terms of unsafe behavior and health management of workers in the future.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

Detection of Smoking Behavior in Images Using Deep Learning Technology (딥러닝 기술을 이용한 영상에서 흡연행위 검출)

  • Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.107-113
    • /
    • 2023
  • This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.

Optimization of image augmentation scale considering reliability and computational efficiency when classifying concrete structure cracks in CNN (CNN 기반 콘크리트 구조물 균열 분류시 신뢰도 및 계산 효율을 고려한 이미지 증강 규모 최적화 연구)

  • Jang, Hyeon-June;Lee, Ho-Hyun;Hong, Sung-Taek;Choi, Young-Don;Kim, Sung-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.324-327
    • /
    • 2022
  • Crack inspection of aged structures is mostly conducted by inspectors using surveying tools on site and visually inspecting them. This method greatly depends on professional worker, and consumes a lot of time and money. An artificial intelligence image classification algorithm is used to make reliable and objective judgments. Since 2018, image augmentation techniques have been used in the image pre-processing stage as they lead to high performance improvement. In this study, an analysis algorithm for cracks in concrete structures was developed using image augmentation techniques, in which the accuracy and speed according to the augmentation ratio were compared and measured for optimization. As a result, it was found that 8 times of image augmentation was appropriate when the accuracy was improved and economic feasibility was taken into account.

  • PDF

IoT industrial site safety management system incorporating AI (AI를 접목한 IoT 기반 산업현장 안전관리 시스템)

  • Lee, Seul;Jo, So-Young;Yeo, Seung-Yeon;Lee, Hee-Soo;Kim, Sung-Wook
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.118-121
    • /
    • 2022
  • 국내 산업재해 사고 사망자의 상당수가 건설업에서 발생하고 있다. 건설 현장에는 굴삭기, 크레인과 같은 중장비가 많고 높은 곳에서 작업하는 경우가 흔해 위험 요소에 노출될 가능성이 높다. 물리적 사고 외에도 작업 중 발생하는 미세먼지에는 여러 유해 인자가 존재하여 건설근로자들에게 호흡기질환과 같은 직업병을 유발한다. 정부에서는 산업현장 안전 관리의 중요성이 증가함에 따라 각종 산업재해로부터 근로자를 보호하기 위한 법안을 마련하였다. 따라서 건설 현장의 경우 산업재해를 방지하기 위해서 위험요소를 사전에 인지하고 즉각 대응할 수 있는 기술이 필요하다. 본 연구에서는 인공지능(AI)과 사물인터넷(IoT)을 통한 자동화 기술을 활용하여 24시간 안전 관리 시스템을 제안한다. 제안하는 IoT 기반 통합안전 관리 시스템은 AI를 적용한 CCTV를 통해 산업 현장을 모니터링하고, 다수의 IoT 센서가 측정한 수치를 근로자 및 관리자가 실시간으로 확인할 수 있게 하여 산업 현장 내 안전사고를 예방한다. 구체적으로 어플리케이션을 통해 미세먼지 농도, 가스 농도, 온도, 습도, 안전모 착용 여부 등을 모니터링할 수 있다. 모니터링 중에 유해물질의 농도가 일정 수치를 넘기거나 안전모를 착용하지 않은 근로자가 발견될 경우 근로자 및 관리자에게 경고 알림을 발송한다. 유해물질 농도는 IoT 센서를 통해 측정하며 안전모 착용 여부는 카메라 센서에 딥러닝 모델을 적용하여 인식하였다. 본 연구에서 제시한 통합안전관리시스템을 통해 건설현장을 비롯한 산업현장의 산업재해 감소와 근로자 안전 증진에 기여할 수 있을 것으로 기대한다.

Smart Railway Communication Network Structure (스마트 철도 통신 네트워크 구조)

  • Kim, Young-dong;Kim, Jongki;Lee, Sanghak;Park, Eunkyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.357-359
    • /
    • 2021
  • Railway system as a mass transportation is under progress to smart railway system beyond high speed and automation era. Communication network technology including 5G-R(5th Generation - Railway) mobile communication technology and information convergence technology of Big Data, Deep Learnig, AI(Artificial Intelliegnce) and Block Chain have to be used for implementation and operation of this smart railway system. In this paper, a communication network structure is suggested for this smart railway system. This suggested smart railway commnuication network structure is composed with layered structure of plane unit for safety operation of high speed railway, railway system management and customer services, and also have some complexed function of each plane. Results of this study can be used for smart railway communication network implementation, operation and managements, development of railway communication standards.

  • PDF