• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.029 seconds

Recognition of Classification of Traffic Sign Images Using CNN (CNN을 활용한 교통 표지판 이미지 분류 인식)

  • MunJeong Kim;Sinrock Chae;EunKi Hong;Min Hwangbo;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.317-318
    • /
    • 2023
  • 본 논문에서는 CNN(Convolutional Neural Network)을 활용하여 자율주행 자동차가 각 국가별 교통 규칙 및 도로 표시를 이해하고 정확한 주행을 할 수 있도록, Deep Neural Network 시스템을 설계하고 구현하는 방법을 제안한다. 연구 방법으로는 한국도로교통공단(koroad)에서 제공하는 교통안전표지 일람표 이미지를 학습하여, 차량이 자율주행을 하기 위해 요구되는 표지판을 인식할 수 있도록 하였다. 본 논문에서 설계한 학습 시스템으로 도로교통표지판의 인식에 성공했으며, 이를 통해 자율주행차량이 표지판을 인식할 수 있으며, 시각장애인 및 고령운전자를 위한 지원 역시 가능하다고 사료된다.

  • PDF

Industrial Deep Learning-based Mobility Platform Research for Anomaly Wiring Detection (산업용 딥러닝 기반 배선 이상 검출을 위한 모빌리티 플랫폼 연구)

  • Hyeon-Woo No;Ji-Soo Kim;Min-Uk Oh;Sang-Bae Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.957-958
    • /
    • 2023
  • 본 연구에서는 공정 내 인체 끼임 사고 및 저출산 고령화 시대 등의 문제들로 인한 인력 감소 문제들을 해결하기 위하여 인공지능 기반의 모빌리티 플랫폼을 개발하였다. 본 플랫폼은 yolo-v4 기반으로 로봇이 공정 내부를 이동하면서 공정 내 불량 와이어를 검출하여 공정 유지보수 관리자에게 알려 주고 실시간으로 공정 내부 상황을 무선으로 모니터링할 수 있는 기술을 연구하였다. 또한, 로봇에는 무선 충전 기능을 갖추고 있어 추가적인 공정 내 인체 끼임 사고 등을 예방할 수 있도록 하였다. 본 연구 결과에서는 불량 와이어 검출 시, 평균 92.1%의 정확도를 보였으며, 공정 제품에 대한 양품, 불량품의 검출은 평균 98%의 정확도를 보였다. 또한, 실시간 무선 영상 모니터링는 24fps로 전송되어 공정 내부를 살피는 것에 유의미한 결과를 보였다.

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Real-time Artificial Neural Network for High-dimensional Medical Image (고차원 의료 영상을 위한 실시간 인공 신경망)

  • Choi, Kwontaeg
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.637-643
    • /
    • 2016
  • Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

A Program for Finding Missing Person Based on Deep Learning (Deep Learning 기술 기반의 실종자 수색 프로그램)

  • Kim, Min-Sun;Sohn, Ji-Hye;Lee, Yoo-Jin;Lee, Jung-Hyun;Yong, Hwan-Seung
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.581-582
    • /
    • 2016
  • 매년 많은 실종자가 발생하며 이를 인력으로 해결하는 것은 제한적이다. 본 논문은 드론을 통해 인간이 수색할 수 있는 것보다 넓은 지역의 이미지를 촬영하고, 이 이미지에서 딥 러닝 기술을 기반으로 학습시킨 모델을 통해 실종자의 특징을 인식해 그의 위치를 찾아내는 프로그램에 대해 다룬다. 드론과 인공지능을 접목한 본 프로그램을 통해 실종자들의 높은 복귀율을 기대하게 한다.

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

Design of disease diagnosis system for pets (반려동물의 질병 진단 시스템)

  • Go, Jun-Hyeok;O, Dong-Hyeop;Lee, Ji-Won;Baek, Chan-Young;Kim, Woo-Sung
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.635-636
    • /
    • 2022
  • 본 논문은 딥러닝을 이용해 개인이나, 수의사가 반려동물의 피부병을 특정 하는데 있어서 도움을 줄 수 있는 시스템을 설계하였다. 이 시스템은 사용자가 사용하는 모바일 어플리케이션을 통해 이미지를 수집하고 Mask_RCNN 모델을 사용하여 '구진 플라크','비듬 각질 상피성잔고리', '태선화 과다색소침착', 미란 궤양', '결정 종괴', 농포 여드름'의 6 가지 상태로 분류한 다음 사용자에게 대처법과 병명을 알려주는 반려동물 질병 진단 시스템을 설계하였다.