• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.031 seconds

Design of new CNN structure with internal FC layer (내부 FC층을 갖는 새로운 CNN 구조의 설계)

  • Park, Hee-mun;Park, Sung-chan;Hwang, Kwang-bok;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.466-467
    • /
    • 2018
  • Recently, artificial intelligence has been applied to various fields such as image recognition, image recognition speech recognition, and natural language processing, and interest in Deep Learning technology is increasing. Many researches on Convolutional Neural Network(CNN), which is one of the most representative algorithms among Deep Learning, have strong advantages in image recognition and classification and are widely used in various fields. In this paper, we propose a new network structure that transforms the general CNN structure. A typical CNN structure consists of a convolution layer, ReLU layer, and a pooling layer. Therefore in this paper, We intend to construct a new network by adding fully connected layer inside a general CNN structure. This modification is intended to increase the learning and accuracy of the convoluted image by including the generalization which is an advantage of the neural network.

  • PDF

Deep Learning-Based User Emergency Event Detection Algorithms Fusing Vision, Audio, Activity and Dust Sensors (영상, 음성, 활동, 먼지 센서를 융합한 딥러닝 기반 사용자 이상 징후 탐지 알고리즘)

  • Jung, Ju-ho;Lee, Do-hyun;Kim, Seong-su;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.109-118
    • /
    • 2020
  • Recently, people are spending a lot of time inside their homes because of various diseases. It is difficult to ask others for help in the case of a single-person household that is injured in the house or infected with a disease and needs help from others. In this study, an algorithm is proposed to detect emergency event, which are situations in which single-person households need help from others, such as injuries or disease infections, in their homes. It proposes vision pattern detection algorithms using home CCTVs, audio pattern detection algorithms using artificial intelligence speakers, activity pattern detection algorithms using acceleration sensors in smartphones, and dust pattern detection algorithms using air purifiers. However, if it is difficult to use due to security issues of home CCTVs, it proposes a fusion method combining audio, activity and dust pattern sensors. Each algorithm collected data through YouTube and experiments to measure accuracy.

Application and Performance Analysis of Double Pruning Method for Deep Neural Networks (심층신경망의 더블 프루닝 기법의 적용 및 성능 분석에 관한 연구)

  • Lee, Seon-Woo;Yang, Ho-Jun;Oh, Seung-Yeon;Lee, Mun-Hyung;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.23-34
    • /
    • 2020
  • Recently, the artificial intelligence deep learning field has been hard to commercialize due to the high computing power and the price problem of computing resources. In this paper, we apply a double pruning techniques to evaluate the performance of the in-depth neural network and various datasets. Double pruning combines basic Network-slimming and Parameter-prunning. Our proposed technique has the advantage of reducing the parameters that are not important to the existing learning and improving the speed without compromising the learning accuracy. After training various datasets, the pruning ratio was increased to reduce the size of the model.We confirmed that MobileNet-V3 showed the highest performance as a result of NetScore performance analysis. We confirmed that the performance after pruning was the highest in MobileNet-V3 consisting of depthwise seperable convolution neural networks in the Cifar 10 dataset, and VGGNet and ResNet in traditional convolutional neural networks also increased significantly.

A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques (Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구)

  • Kim, Jae-Jung;Ryu, Jin-Kyu;Kwak, Dong-Kurl;Byun, Sun-Joon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1079-1087
    • /
    • 2018
  • Recently, computer vision field based deep learning artificial intelligence has become a hot topic among various image analysis boundaries. In this study, flames are detected in fire images using the Faster R-CNN algorithm, which is used to detect objects within the image, among various image recognition algorithms based on deep learning. In order to improve fire detection accuracy through a small amount of data sets in the learning process, we use image augmentation techniques, and learn image augmentation by dividing into 6 types and compare accuracy, precision and detection rate. As a result, the detection rate increases as the type of image augmentation increases. However, as with the general accuracy and detection rate of other object detection models, the false detection rate is also increased from 10% to 30%.

Comparison of Deep Learning Activation Functions for Performance Improvement of a 2D Shooting Game Learning Agent (2D 슈팅 게임 학습 에이전트의 성능 향상을 위한 딥러닝 활성화 함수 비교 분석)

  • Lee, Dongcheul;Park, Byungjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Recently, there has been active researches about building an artificial intelligence agent that can learn how to play a game by using re-enforcement learning. The performance of the learning can be diverse according to what kinds of deep learning activation functions they used when they train the agent. This paper compares the activation functions when we train our agent for learning how to play a 2D shooting game by using re-enforcement learning. We defined performance metrics to analyze the results and plotted them along a training time. As a result, we found ELU (Exponential Linear Unit) with a parameter 1.0 achieved best rewards than other activation functions. There was 23.6% gap between the best activation function and the worst activation function.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Real-time traffic light information recognition based on object detection models (객체 인식 모델 기반 실시간 교통신호 정보 인식)

  • Joo, eun-oh;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.81-93
    • /
    • 2022
  • Recently, there have been many studies on object recognition around the vehicle and recognition of traffic signs and traffic lights in autonomous driving. In particular, such the recognition of traffic lights is one of the core technologies in autonomous driving. Therefore, many studies for such the recognition of traffic lights have been performed, the studies based on various deep learning models have increased significantly in recent. In addition, as a high-quality AI training data set for voice, vision, and autonomous driving is released on AIHub, it makes it possible to develop a recognition model for traffic lights suitable for the domestic environment using the data set. In this study, we developed a recognition model for traffic lights that can be used in Korea using the AIHub's training data set. In particular, in order to improve the recognition performance, we used various models of YOLOv4 and YOLOv5, and performed our recognition experiments by defining various classes for the training data. In conclusion, we could see that YOLOv5 shows better performance in the recognition than YOLOv4 and could confirm the reason from the architecture comparison of the two models.

AI-Based Particle Position Prediction Near Southwestern Area of Jeju Island (AI 기법을 활용한 제주도 남서부 해역의 입자추적 예측 연구)

  • Ha, Seung Yun;Kim, Hee Jun;Kwak, Gyeong Il;Kim, Young-Taeg;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.72-81
    • /
    • 2022
  • Positions of five drifting buoys deployed on August 2020 near southwestern area of Jeju Island and numerically predicted velocities were used to develop five Artificial Intelligence-based models (AI models) for the prediction of particle tracks. Five AI models consisted of three machine learning models (Extra Trees, LightGBM, and Support Vector Machine) and two deep learning models (DNN and RBFN). To evaluate the prediction accuracy for six models, the predicted positions from five AI models and one numerical model were compared with the observed positions from five drifting buoys. Three skills (MAE, RMSE, and NCLS) for the five buoys and their averaged values were calculated. DNN model showed the best prediction accuracy in MAE, RMSE, and NCLS.

SCLC-Edge Detection Algorithm for Skin Cancer Classification (피부암 병변 분류를 위한 SCLC-Edge 검출 알고리즘)

  • June-Young Park;Chang-Min Kim;Roy C. Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.256-263
    • /
    • 2022
  • Skin cancer is one of the most common diseases in the world, and the incidence rate in Korea has increased by about 100% over the past five years. In the United States, more than 5 million people are diagnosed with skin cancer every year. Skin cancer mainly occurs when skin tissue is damaged for a long time due to exposure to ultraviolet rays. Melanoma, a malignant tumor of skin cancer, is similar in appearance to Atypical melanocytic nevus occurring on the skin, making it difficult for the general public to be aware of it unless secondary signs occur. In this paper, we propose a skin cancer lesion edge detection algorithm and a deep learning model, CRNN, which performs skin cancer lesion classification for early detection and classification of these skin cancers. As a result of the experiment, when using the contour detection algorithm proposed in this paper, the classification accuracy was the highest at 97%. For the Canny algorithm, 78% was shown, 55% for Sobel, and 46% for Laplacian.

Implementation of Pet Management System including Deep Learning-based Breed and Emotion Recognition SNS (딥러닝 기반 품종 및 감정인식 SNS를 포함하는 애완동물 관리 시스템 구현)

  • Inhwan Jung;Kitae Hwang;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.45-50
    • /
    • 2023
  • As the ownership of pets has steadily increased in recent years, the need for an effective pet management system has grown. In this study, we propose a pet management system with a deep learning-based emotion recognition SNS. The system detects emotions through pet facial expressions using a convolutional neural network (CNN) and shares them with a user community through SNS. Through SNS, pet owners can connect with other users, share their experiences, and receive support and advice for pet management. Additionally, the system provides comprehensive pet management, including tracking pet health and vaccination and reservation reminders. Furthermore, we added a function to manage and share pet walking records so that pet owners can share their walking experiences with other users. This study demonstrates the potential of utilizing AI technology to improve pet management systems and enhance the well-being of pets and their owners.