Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.20-29
/
2021
In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.
Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.9
/
pp.1272-1278
/
2022
The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021 and is implementing this law. However, the number of occupational accidents in 2021 increased by 10.7% compared to the same period of the previous year. Therefore, safety measures are urgently needed in the industrial field. In this study, BLE Mesh networking technology is applied for safety management of high-risk industrial sites with poor communication environment. The complex sensor AIoT device collects gas sensing values, voice and motion values in real time, analyzes the information values through artificial intelligence LSTM algorithm and CNN algorithm, and recognizes dangerous situations and transmits them to the server. The server monitors the transmitted risk information in real time so that immediate relief measures are taken. By applying the AIoT device and safety management system proposed in this study to high-risk industrial sites, it will minimize industrial accidents and contribute to the expansion of the social safety net.
As satellite technology progresses, a growing number of satellites-like CubeSat and radar satellites-are available with a higher spectral and spatial resolutions than previous. National initiatives used to be the main force behind satellite development, but current trendsindicate that private enterprises are also actively exploring and developing new satellite technologies. This special issue examines the recent research results and advanced technology in remote sensing approaches for Earth environment analysis. These results provide important information for the development of satellite sensors in the future and are of great interest to researchers working with artificial intelligence in thisfield. The special issue introduces the latest advances in remote sensing technology and highlights studies that make use of data to monitor and forecast Earth's environment. The objective is to provide direction for the future of remote sensing research.
Journal of Korean Society of Disaster and Security
/
v.16
no.4
/
pp.129-136
/
2023
A special offshore bridge with a high pylon has special structural features.Special offshore bridges have inspection blind spots that are difficult to visually inspect. To solve this problem, safety inspection methods using drones are being studied. In this study, image data of the pylon of a special offshore bridge was acquired using a drone. In addition, an artificial intelligence algorithm was developed to detect damage to the pylon surface. The AI algorithm utilized a deep learning network with different structures. The algorithm applied the stacking ensemble learning method to build a model that formed the ensemble and collect the results.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.469-472
/
2022
With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.
Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.
Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
Smart Media Journal
/
v.12
no.5
/
pp.28-35
/
2023
In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.
Recently, the importance of an early response has been emphasized due to the large fire. The most efficient method of extinguishing a large fire is early response to a small flame. To implement this solution, we propose a fire detection mechanism based on a deep learning artificial intelligence. In this study, a small amount of data sets is manipulated by an image augmentation technique using rotating, tilting, blurring, and distorting effects in order to increase the number of the data sets by 5 times, and we study the flame detection algorithm using faster R-CNN.
인공지능의 발전으로 의료영상 분야에서 딥러닝 기반 질병 진단 연구가 활발하다. 그러나 모델 개발 시 학습 데이터의 개수와 품질은 매우 중요한데, 의료 분야 특성상 접근 가능한 데이터셋이 적으며 오픈 데이터셋은 서로 다른 기관에서 배포되거나 웹상에서 수집된 것으로 진단에 적합한 품질을 기대하기 어렵다. 또한, 기존 연구는 데이터셋이 학습에 적합한지에 대한 품질검증 없이 사용한다. 따라서 본 논문에서는 임상에서 사용하는 화질 평가 요소에 근거를 두고 영역별 화소값 분석을 통한 흉부 X선 영상 품질 평가 기법을 제안한다. 오픈 데이터셋 JSRT, Chest14와 국내 A 병원 데이터셋 AUH에 제안한 기법을 적용한 결과 민감도 91.5%, 특이도 96.1%의 우수한 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.