• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.028 seconds

Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data (차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지)

  • Kim, Songhee;Kim, Sunhye;Yoon, Byungun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.

Error Analysis of Recent Conversational Agent-based Commercialization Education Platform (최신 대화형 에이전트 기반 상용화 교육 플랫폼 오류 분석)

  • Lee, Seungjun;Park, Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1272-1278
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021 and is implementing this law. However, the number of occupational accidents in 2021 increased by 10.7% compared to the same period of the previous year. Therefore, safety measures are urgently needed in the industrial field. In this study, BLE Mesh networking technology is applied for safety management of high-risk industrial sites with poor communication environment. The complex sensor AIoT device collects gas sensing values, voice and motion values in real time, analyzes the information values through artificial intelligence LSTM algorithm and CNN algorithm, and recognizes dangerous situations and transmits them to the server. The server monitors the transmitted risk information in real time so that immediate relief measures are taken. By applying the AIoT device and safety management system proposed in this study to high-risk industrial sites, it will minimize industrial accidents and contribute to the expansion of the social safety net.

Environmental Monitoring and Forecasting Using Advanced Remote Sensing Approaches (최신 원격탐사 기법을 이용한 지구환경 모니터링 및 예측)

  • Seonyoung Park;Ahram Song;Yangwon Lee;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.885-890
    • /
    • 2023
  • As satellite technology progresses, a growing number of satellites-like CubeSat and radar satellites-are available with a higher spectral and spatial resolutions than previous. National initiatives used to be the main force behind satellite development, but current trendsindicate that private enterprises are also actively exploring and developing new satellite technologies. This special issue examines the recent research results and advanced technology in remote sensing approaches for Earth environment analysis. These results provide important information for the development of satellite sensors in the future and are of great interest to researchers working with artificial intelligence in thisfield. The special issue introduces the latest advances in remote sensing technology and highlights studies that make use of data to monitor and forecast Earth's environment. The objective is to provide direction for the future of remote sensing research.

A Study on the Surface Damage Detection Method of the Main Tower of a Special Bridge Using Drones and A.I. (드론과 A.I.를 이용한 특수교 주탑부 표면 손상 탐지 방법 연구)

  • Sungjin Lee;Bongchul Joo;Jungho Kim;Taehee Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.129-136
    • /
    • 2023
  • A special offshore bridge with a high pylon has special structural features.Special offshore bridges have inspection blind spots that are difficult to visually inspect. To solve this problem, safety inspection methods using drones are being studied. In this study, image data of the pylon of a special offshore bridge was acquired using a drone. In addition, an artificial intelligence algorithm was developed to detect damage to the pylon surface. The AI algorithm utilized a deep learning network with different structures. The algorithm applied the stacking ensemble learning method to build a model that formed the ensemble and collect the results.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF

A Study on the Deep Learning-Based Tomato Disease Diagnosis Service (딥러닝기반 토마토 병해 진단 서비스 연구)

  • Jo, YuJin;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.48-55
    • /
    • 2022
  • Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

A Study on Fire Recognition Algorithm Using Deep Learning Artificial Intelligence (딥러닝 인공지능 기법을 이용한 화재인식 알고리즘에 관한 연구)

  • Ryu, Jin-Kyu;Kwak, Dong-Kurl;Kim, Jae-Jung;Choi, Jung-Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.275-277
    • /
    • 2018
  • Recently, the importance of an early response has been emphasized due to the large fire. The most efficient method of extinguishing a large fire is early response to a small flame. To implement this solution, we propose a fire detection mechanism based on a deep learning artificial intelligence. In this study, a small amount of data sets is manipulated by an image augmentation technique using rotating, tilting, blurring, and distorting effects in order to increase the number of the data sets by 5 times, and we study the flame detection algorithm using faster R-CNN.

  • PDF

Quality Evaluation of Chest X-ray Open Dataset through Pixel Value Analysis by Region (영역별 화소값 분석을 통한 흉부 X선 오픈 데이터셋 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Sun, Joo-Sung;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.614-617
    • /
    • 2022
  • 인공지능의 발전으로 의료영상 분야에서 딥러닝 기반 질병 진단 연구가 활발하다. 그러나 모델 개발 시 학습 데이터의 개수와 품질은 매우 중요한데, 의료 분야 특성상 접근 가능한 데이터셋이 적으며 오픈 데이터셋은 서로 다른 기관에서 배포되거나 웹상에서 수집된 것으로 진단에 적합한 품질을 기대하기 어렵다. 또한, 기존 연구는 데이터셋이 학습에 적합한지에 대한 품질검증 없이 사용한다. 따라서 본 논문에서는 임상에서 사용하는 화질 평가 요소에 근거를 두고 영역별 화소값 분석을 통한 흉부 X선 영상 품질 평가 기법을 제안한다. 오픈 데이터셋 JSRT, Chest14와 국내 A 병원 데이터셋 AUH에 제안한 기법을 적용한 결과 민감도 91.5%, 특이도 96.1%의 우수한 성능을 확인하였다.