• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.033 seconds

RLVisualizer: An application for Visualizing Trajectories of Reinforcement Learning Problem (RLVisualizer: 강화학습의 문제의 학습궤적을 시각화하는 응용)

  • Chung, TaeChoong;Tuyen, Le Pham
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.13-14
    • /
    • 2017
  • 딥러닝을 비롯한 전반적인 인공지능에 대한 관심이 뜨겁다. 특정 영역에 영향력을 주었던 과거와 다르게 인공지능의 영향력은 인류문명 전체에 변화를 주고 있다. 예술 분야도 영향을 받고 있는데, 그 중 한 분야는 과학적 실험의 자료를 어떻게 시각화 하느냐의 문제를 풀다가 나오기도 한다. 자료를 시각화하는 것은 실험과정 및 결과를 과학자 및 독자들에게 쉽게 전달하기위한 것이다. 그런데, 그 시각화된 영상 중에는 미적인 아름다움이 있는 경우가 있다. 본 연구자는 강화학습의 정책이 어떻게 개선되고 있는지 보기위해 강화학습의 과정을 시각화 해서 검증하는 시도를 했다. 그 과정에서 만든 자료가 미술적인 관점에서도 아름다움이 있는 작품을 만들 수 있다는 확신이 들어서 강화학습용 디지탈예술 도구를 만들어 작품을 생성해 보았다.

  • PDF

A Study on Steganography to Hide Secret Messages in Skeleton Datasets for Action Recognition (행동 인식을 위한 스켈레톤 데이터셋에 비밀 메시지를 은닉하기 위한 스테가노그라피 연구)

  • Sung, Rakbin;Lee, Daewon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.157-160
    • /
    • 2022
  • 딥러닝이 각광받기 시작하면서 인간의 자세와 행동을 인식하고 분류하기 위한 인공지능 기술 또한 급속도로 발전하게 되었다. 영상에서 인간의 자세를 디지털 데이터로 표현할 때 인체의 주요 관절점의 위치와 연결관계를 나타내는 스켈레톤 표현 방식을 주로 사용한다. 본 논문에서는 스켈레톤 데이터에 비밀 메시지를 은닉할 수 있는 스테가노그라피 알고리즘에 대해 소개하고, 스켈레톤을 구성하는 주요 관절점 키포인트를 조작했을 때 행동 인식 인공지능 모델이 어떻게 반응하는지 살펴봄으로써 스켈레톤 데이터에 대한 스테가노그라피 알고리즘의 특성과 보안성에 대해 논의한다.

Analysis of Research Trends in New Drug Development with Artificial Intelligence Using Text Mining (텍스트 마이닝을 이용한 인공지능 활용 신약 개발 연구 동향 분석)

  • Jae Woo Nam;Young Jun Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.663-679
    • /
    • 2023
  • This review analyzes research trends related to new drug development using artificial intelligence from 2010 to 2022. This analysis organized the abstracts of 2,421 studies into a corpus, and words with high frequency and high connection centrality were extracted through preprocessing. The analysis revealed a similar word frequency trend between 2010 and 2019 to that between 2020 and 2022. In terms of the research method, many studies using machine learning were conducted from 2010 to 2020, and since 2021, research using deep learning has been increasing. Through these studies, we investigated the trends in research on artificial intelligence utilization by field and the strengths, problems, and challenges of related research. We found that since 2021, the application of artificial intelligence has been expanding, such as research using artificial intelligence for drug rearrangement, using computers to develop anticancer drugs, and applying artificial intelligence to clinical trials. This article briefly presents the prospects of new drug development research using artificial intelligence. If the reliability and safety of bio and medical data are ensured, and the development of the above artificial intelligence technology continues, it is judged that the direction of new drug development using artificial intelligence will proceed to personalized medicine and precision medicine, so we encourage efforts in that field.

Hyperparameter Search for Facies Classification with Bayesian Optimization (베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색)

  • Choi, Yonguk;Yoon, Daeung;Choi, Junhwan;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • With the recent advancement of computer hardware and the contribution of open source libraries to facilitate access to artificial intelligence technology, the use of machine learning (ML) and deep learning (DL) technologies in various fields of exploration geophysics has increased. In addition, ML researchers have developed complex algorithms to improve the inference accuracy of various tasks such as image, video, voice, and natural language processing, and now they are expanding their interests into the field of automatic machine learning (AutoML). AutoML can be divided into three areas: feature engineering, architecture search, and hyperparameter search. Among them, this paper focuses on hyperparamter search with Bayesian optimization, and applies it to the problem of facies classification using seismic data and well logs. The effectiveness of the Bayesian optimization technique has been demonstrated using Vincent field data by comparing with the results of the random search technique.

Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning (AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1341-1347
    • /
    • 2020
  • Legacy studies for classifying arrhythmia have been studied in order to improve the accuracy of classification, Neural Network, Fuzzy, Machine Learning, etc. In particular, deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose parameter extraction based on AR and arrhythmia classification through a deep learning. For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The classification rate of PVC is evaluated through MIT-BIH arrhythmia database. The achieved scores indicate arrhythmia classification rate of over 97%.

Implementation of Probabilistic Predictive Artificial Intelligence for Remote Diagnosis in Aging Society (고령화 사회 원격 진료를 위한 확률론적 예측인공지능 연구)

  • Jeong, Jae-Seung;Ju, Hyunsu
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2020
  • 저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.

Deep learning algorithms for identifying 79 dental implant types (79종의 임플란트 식별을 위한 딥러닝 알고리즘)

  • Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.196-203
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

Development of a driver's emotion detection model using auto-encoder on driving behavior and psychological data

  • Eun-Seo, Jung;Seo-Hee, Kim;Yun-Jung, Hong;In-Beom, Yang;Jiyoung, Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • Emotion recognition while driving is an essential task to prevent accidents. Furthermore, in the era of autonomous driving, automobiles are the subject of mobility, requiring more emotional communication with drivers, and the emotion recognition market is gradually spreading. Accordingly, in this research plan, the driver's emotions are classified into seven categories using psychological and behavioral data, which are relatively easy to collect. The latent vectors extracted through the auto-encoder model were also used as features in this classification model, confirming that this affected performance improvement. Furthermore, it also confirmed that the performance was improved when using the framework presented in this paper compared to when the existing EEG data were included. Finally, 81% of the driver's emotion classification accuracy and 80% of F1-Score were achieved only through psychological, personal information, and behavioral data.

Present Status and Future of AI-based Drug Discovery (신약개발에서의 AI 기술 활용 현황과 미래)

  • Jung, Myunghee;Kwon, Wonhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1797-1808
    • /
    • 2021
  • Artificial intelligence is considered one of the core technologies leading the 4th industrial revolution. It is adopted in various fields bringing about a huge paradigm shift throughout our society. The field of biotechnology is no exception. It is undergoing innovative development by converging with other disciplines such as computers, electricity, electronics, and so on. In drug discovery and development, big data-based AI technology has a great potential of improving the efficiency and quality of drug development, rapidly advancing to overcome the limitations in the existing drug development process. AI technology is to be specialized and developed for the purpose including clinical efficacy and safety-related end points based on the multidisciplinary knowledge such as biology, chemistry, toxicology, pharmacokinetics, etc. In this paper, we review the current status of AI technology applied for drug discovery and consider its limitations and future direction.