• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.028 seconds

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

Efficient use of artificial intelligence ChatGPT in educational ministry (인공지능 챗GPT의 교육목회에 효율적인 활용방안)

  • Jang Heum Ok
    • Journal of Christian Education in Korea
    • /
    • v.78
    • /
    • pp.57-85
    • /
    • 2024
  • Purpose of the study: In order to utilize artificial intelligence-generated AI in educational ministry, this study analyzes the concept of artificial intelligence and generative AI and the educational theological aspects of educational ministry to find ways to efficiently utilize artificial intelligence ChatGPT in educational ministry. Contents and methods of the study: The contents of this study are. First, the contents of this study were analyzed by dividing the concepts of artificial intelligence and generative AI into the concept of artificial intelligence, types of artificial intelligence, and generative language model AI ChatGPT. Second, the educational theological analysis of educational ministry was divided into the concept of educational ministry, the goals of educational ministry, the content of educational ministry, and the direction of educational ministry in the era of artificial intelligence. Third, the plan to use artificial intelligence ChatGPT in educational ministry is to provide tools for writing sermon manuscripts, preparation tools for worship and prayer, and church education, focusing on the five functions of the early church community. It was analyzed by dividing it into tools for teaching, tools for teaching materials for believers, and tools for serving and volunteering. Conclusion and Recommendation: The conclusion of this study is that, first, when writing sermon manuscripts through artificial intelligence ChatGPT, high-quality sermon manuscripts can be written through the preacher's spirituality, faith, and insight. Second, through artificial intelligence ChatGPT, you can efficiently design and plan worship services and prepare services that serve the congregation objectively through various scenarios. Third, by using artificial intelligence ChatGPT in church education, it can be used while maintaining a complementary relationship with teachers through collaboration with human and artificial intelligence teachers. Fourth, through artificial intelligence ChatGPT, we provide a program that allows members of the church community to share spiritual fellowship, a plan to meet the needs of church members and strengthen interdependence, and an attitude of actively welcoming new people and respecting diversity. It provides useful materials that can play an important role in giving, loving, serving, and growing together in the love of Christ. Lastly, through artificial intelligence ChatGPT, we are seeking ways to provide various information about volunteer activities, learning support for children and youth in the community, mentoring-related programs, and playing a leading role in forming a village community in the local community.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System (해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템)

  • Song, Hyun-hak;Lee, Hyo-chan;Lee, Sung-ju;Jeon, Ho-seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.117-126
    • /
    • 2020
  • A maritime object detection system is an intelligent assistance system to maritime autonomous surface ship(MASS). It detects automatically floating debris, which has a clash risk with objects in the surrounding water and used to be checked by a captain with a naked eye, at a similar level of accuracy to the human check method. It is used to detect objects around a ship. In the past, they were detected with information gathered from radars or sonar devices. With the development of artificial intelligence technology, intelligent CCTV installed in a ship are used to detect various types of floating debris on the course of sailing. If the speed of processing video data slows down due to the various requirements and complexity of MASS, however, there is no guarantee for safety as well as smooth service support. Trying to solve this issue, this study conducted research on the minimization of computation volumes for video data and the increased speed of data processing to detect maritime objects. Unlike previous studies that used the Hough transform algorithm to find the horizon and secure the areas of interest for the concerned objects, the present study proposed a new method of optimizing a binarization algorithm and finding areas whose locations were similar to actual objects in order to improve the speed. A maritime object detection system was materialized based on deep learning CNN to demonstrate the usefulness of the proposed method and assess the performance of the algorithm. The proposed algorithm performed at a speed that was 4 times faster than the old method while keeping the detection accuracy of the old method.

Extracting Neural Networks via Meltdown (멜트다운 취약점을 이용한 인공신경망 추출공격)

  • Jeong, Hoyong;Ryu, Dohyun;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1031-1041
    • /
    • 2020
  • Cloud computing technology plays an important role in the deep learning industry as deep learning services are deployed frequently on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multi-tenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep-learning service with 92.875% accuracy and 1.325kB/s extraction speed.

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

Analysis of Training Method for Matrix Weighted Intra Prediction (MIP) in VVC (VVC 행렬가중 화면내 예측(MIP) 학습기법 분석)

  • Park, Dohyeon;Kwon, Hyoungjin;Jeong, Seyoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.148-150
    • /
    • 2020
  • 최근 VVC(Versatile Video Coding) 표준 완료 이후 JVET(Joint Video Experts Team)은 인공신경망 기반의 비디오 부호화를 위한 AhG(Ad-hoc Group) 구성하고 인공지능을 이용한 비디오 압축 기술들을 검증하고 있으며, MPEG(Moving Picture Experts Group)에서는 DNNVC(Deep Neural Network based Video Coding) 활동을 통해 딥러닝 기반의 차세대 비디오 부호화 표준 기술을 탐색하고 있다. 본 논문은 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 참조하여, MIP 모델의 학습에서 손실함수가 예측 성능에 미치는 영향을 분석한다. 즉, 예측의 왜곡(MSE)만을 고려한 경우와 예측오차의 부호화 비용도 함께 반영한 손실함수를 비교한다. 실험을 위해 HEVC(High Efficiency Video Coding) 화면내 예측 대비 평균적인 PSNR 향상 정도를 나타내는 성능 지표(��PSNR)를 정의한다. 실험결과 예측오차의 부호화 특성을 반영하는 손실함수를 이용한 학습이 MSE 만 고려한 학습 대비 ��PSNR 기준 평균 0.4dB 향상됨을 보였다.

  • PDF

Analysis of Training Method Using Tree Structure for Context Adaptive Neural Network-Based Intra Prediction (문맥적응적 신경망 기반 화면내 예측의 트리 구조 반영 학습기법 분석)

  • Moon, Gihwa;Heo, Seung-Jeong;Park, Dohyeon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.55-56
    • /
    • 2021
  • 최근, 딥러닝 및 인공신경망 기술의 발전으로 비디오 부호화 분야에서도 인공지능을 이용한 요소 기술에 대한 연구가 활발이 진행되고 있다. 본 논문에서는 주변 참조샘플로부터 문맥정보를 이용하여 현재블록을 예측하는 CNN 기반의 화면내 예측 모델을 구현하고, 비디오 부호화의 블록 분할 구조를 반영한 학습 기법에 따른 부호화 성능을 분석한다. 실험결과 HM(HEVC Test Model)에 구현한 문맥적응적 신경망 기반 예측 모델에서 트리 분할 구조를 반영한 학습이 HM16.19 대비 0.35% BD-rate 부호화 성능 향상을 보였다.

  • PDF

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • Lee, Seulgi;Kim, KyeongHan;Kim, Byungik;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.