• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.031 seconds

자율운항선박 지원을 위한 실시간 관측 기반의 해양환경 인공지능 예측기술 검증

  • 엄대용;박보슬;이방희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.172-173
    • /
    • 2022
  • 자율운항선박 등 스마트선박에서 항로상의 해양환경 상태를 관측·예측하는 과정은 필수요소이며 선박 통신을 고려했을 때 선박자체에서 취득할 수 있는 정보만을 이용하여 의사결정이 가능하도록 해양환경 정보를 생산하는 기술이 필요하다. 이에 본 연구는 짧은 시간 내에 해상 변화를 예측할 수 있는 인공지능(딥러닝)기반의 예측기법을 개발하였다.

  • PDF

Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests (농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable)

  • Soohwan Kim;DaeKy Jeong;SeungJun Lee;SungYeob Jung;DongJae Yang;GeunyEong Jeong;Suk-Hyung Hwang;Sewoong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

Science Technology - 딥러닝 넘은 인공지능시대 아직 멀었다!

  • Kim, Hyeong-Ja
    • TTA Journal
    • /
    • s.165
    • /
    • pp.58-59
    • /
    • 2016
  • 세간의 화제가 되었던 이세돌 9단 vs 알파고 대결. 난공불락이라 여겼던 바둑에서조차 인공지능이 승리를 거두면서 전 세계는 과학기술 발전에 놀랐고, 인공지능의 무한한 가능성에 감탄했다. 컴퓨터가 사람처럼 정보를 이해 판단하고 더 나아가 추론에 창의성까지 발휘하면서 사람들은 인공지능이 인간의 생각을 뛰어넘을 거라 생각한다. 그런데 과연 그럴까?

  • PDF

The Prediction and Trading Strategy for Intraday Stock Price Movements: A Deep Learning Approach (딥러닝을 이용한 Intraday 주가 예측 및 매매전략)

  • Hong, Yoonsik;Joo, Changhee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.7-10
    • /
    • 2022
  • 본 연구는 국내 주식의 intraday 가격변화를 딥러닝 모형들로 예측하고 그 예측모형을 이용한 매매전략 딥러닝 모형을 제안한다. 주식의 intraday 가격변화에 따라서, 고빈도 매매, 주문집행문제 (order execution problem), 자동화 매매 등과 같은 intraday 주식 트레이딩의 수익률이 달라지기 때문에, 주식의 intraday 가격변화 예측은 주식 투자에 있어서 중요하다. 해외 시장에 대해서는 인공지능 등을 이용한 intraday 가격변화 예측 연구가 활발히 이루어졌지만, 국내의 경우 관련한 연구가 드물어 그 효용성이 명확히 드러나지 않았었다. 그에 따라서, KOSPI 50의 구성 종목에 대하여 정준의(canonical) 딥러닝 모형들을 적용하여 예측 성능을 비교한다. 또한, 그 예측모형들을 활용하여 간소화된 주문집행문제에서의 매매전략 딥러닝 모형을 제안한다. 그리고, 제안한 매매전략 딥러닝 모형을 KOSPI 50의 구성 종목에 대하여 실험하여, 제안한 방법론이 유효함을 밝힌다. 제시된 모형을 실제 주식 매매에 직접 적용하여 수익성을 개선을 기대할 수 있고, 사람이 직접 거래할지라도 효과적인 보조 지표가 될 수 있기에 본 논문은 실용적 의미를 지닌다.

  • PDF

A Study on Artificial Intelligence-based Automated Integrated Security Control System Model (인공지능 기반의 자동화된 통합보안관제시스템 모델 연구)

  • Wonsik Nam;Han-Jin Cho
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.45-52
    • /
    • 2024
  • In today's growing threat environment, rapid and effective detection and response to security events is essential. To solve these problems, many companies and organizations respond to security threats by introducing security control systems. However, existing security control systems are experiencing difficulties due to the complexity and diverse characteristics of security events. In this study, we propose an automated integrated security control system model based on artificial intelligence. It is based on deep learning, an artificial intelligence technology, and provides effective detection and processing functions for various security events. To this end, the model applies various artificial intelligence algorithms and machine learning methods to overcome the limitations of existing security control systems. The proposed model reduces the operator's workload, ensures efficient operation, and supports rapid response to security threats.

Deep Learning-Based Outlier Detection and Correction for 3D Pose Estimation (3차원 자세 추정을 위한 딥러닝 기반 이상치 검출 및 보정 기법)

  • Ju, Chan-Yang;Park, Ji-Sung;Lee, Dong-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.419-426
    • /
    • 2022
  • In this paper, we propose a method to improve the accuracy of 3D human pose estimation model in various move motions. Existing human pose estimation models have some problems of jitter, inversion, swap, miss that cause miss coordinates when estimating human poses. These problems cause low accuracy of pose estimation models to detect exact coordinates of human poses. We propose a method that consists of detection and correction methods to handle with these problems. Deep learning-based outlier detection method detects outlier of human pose coordinates in move motion effectively and rule-based correction method corrects the outlier according to a simple rule. We have shown that the proposed method is effective in various motions with the experiments using 2D golf swing motion data and have shown the possibility of expansion from 2D to 3D coordinates.

Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition (인공지능 기반의 행동인식을 통한 개인 운동 트레이너 구현의 방향성 제시)

  • Ha, Tae Yong;Lee, Hoojin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2019
  • Recently, the use of artificial intelligence technology including deep learning has become active in various fields. In particular, several algorithms showing superior performance in object recognition and detection based on deep learning technology have been presented. In this paper, we propose the proper direction for the implementation of mobile healthcare application that user's convenience is effectively reflected. By effectively analyzing the current state of use satisfaction research for the existing fitness applications and the current status of mobile healthcare applications, we attempt to secure survival and superiority in the fitness application market, and, at the same time, to maintain and expand the existing user base.

Deep Learning City: A Big Data Analytics Framework for Smart Cities (딥러닝 시티: 스마트 시티의 빅데이터 분석 프레임워크 제안)

  • Kim, Hwa-Jong
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.79-92
    • /
    • 2017
  • As city functions develop more complex and advanced, interests in smart cities are also increasing. Smart cities refer to the cities effectively solving urban problems such as traffic, safety, welfare, and living issues by utilizing ICT. Recently, many countries are attempting to introduce big data, Internet of Things, and artificial intelligence into smart cities, but they have not yet developed into comprehensive urban services. In this paper, we review the current status of domestic and overseas smart cities and suggest ways to solve issues of data sharing and service compatibility. To this end, we propose a "Deep Learning City Framework" that incorporates the deep learning technology into smart city services, and propose a new smart city strategy that safely shares spatial and temporal data in cities and converges learning data of various cities.

영상인식 및 분류용 인공지능 가속기의 최신 성능평가: MLPerf를 중심으로

  • Seo, Yeong-Ho;Park, Seong-Ho;Park, Jang-Ho
    • Broadcasting and Media Magazine
    • /
    • v.25 no.1
    • /
    • pp.28-41
    • /
    • 2020
  • 인공지능의 고속화를 위한 인공지능용 혹은 딥러닝용 하드웨어 및 소프트웨어 시스템에 대한 수요가 폭발적으로 증가하고 있다. 또한 딥러닝 모델에 따라 다양한 추론 시스템이 끊임없이 연구되고 소개되고 있다. 최근에는 전세계에서 100개가 넘는 회사들에서 인공지능용 추론 칩을 개발하고 있고, 임베디드 시스템에서 데이터센터 솔루션에 이르기까지 다양한 분야를 위한 것들이 존재한다. 이러한 하드웨어의 개발을 위해서 12개 이상의 소프트웨어 프레임 워크 및 라이브러리가 활용되고 있다. 하드웨어와 소프트웨어가 다양한 만큼 이들을 중립적으로 평가하기가 매우 어려운 실정이다. 따라서 업계 표준의 인공지능을 위한 벤치마킹 및 평가기준이 필요한데, 이러한 요구로 인해 MLPerf 추론이 만들어졌다. MLPerf는 30개 이상의 기업과 200개 이상의 머신러닝 연구자 및 실무자들에 의해 운영되고, 전혀 다른 구조를 갖는 시스템을 비교할 수 있는 일관성 있는 규칙과 방법을 제시한다. MLPerf에 의해 제시된 규칙에 의해 2019년도에 처음으로 다양한 인공지능용 추론 하드웨어가 벤치마킹을 수행했다. 여기에는 14개의 회사에서 600개 이상의 추론 결과를 측정하였으며, 30개가 넘는 시스템이 이러한 추론에 사용되었다. 본 원고에서는 MLPerf의 학습과 추론을 중심으로 하여 최근에 개발된 다양한 회사들의 인공지능용 하드웨어, 즉 가속기 들의 성능을 살펴보고자 한다.

딥러닝 기반 영상 조작 및 검출 기술 동향

  • O, Byeong-Tae
    • Broadcasting and Media Magazine
    • /
    • v.27 no.2
    • /
    • pp.62-69
    • /
    • 2022
  • 다양한 목적으로 영상을 조작하려는 시도는 디지털 영상이 보편화되기 시작할 때부터 지속적으로 존재해 왔던 문제이며, 이러한 영상 조작의 유무를 검출하려는 시도 또한 지난 수십 년 동안 끊임없이 연구되어 왔다. 최근 빠르게 발전하는 인공지능 기술, 그 중에서도 딥러닝 기술을 이용하여 영상 조작을 검출하는 기술이 다양하게 발전되고 있지만, 한편으로는 딥러닝 기술을 이용하여 조작을 보다 정교하게 진행하거나 검출을 회피하려는 기술 또한 빠르게 발전하고 있다. 본 고에서는 영상을 조작하고, 검출하고 회피하는 기술 동향에 대하여 종합적으로 소개하고, 특히 딥러닝 기반의 기술이 각각의 영역에서 어떻게 적용되고 발전하고 있는지에 대하여 면밀히 살펴보고자 한다.