• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.027 seconds

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.

Collecting and utilizing virtual driving data reflecting real-world environment for autonomous driving based on End to End deep learning (End to End 딥러닝 기반의 자율주행을 위한 실세계 환경을 반영한 가상 주행 데이터 수집 및 활용)

  • Kim, Jun-Tae;Bae, Changseok
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.394-397
    • /
    • 2018
  • 최근 인공지능 연구가 활발하게 진행이 되면서 여러 기업에서 자율 주행연구도 활발하게 진행되고 있다. 하지만 실제 상황에서 자동차 주행 데이터를 얻기에는 여러 위험사항들과 경제적인 낭비가 있다. 그렇기 때문에 게임 상에서 데이터를 수집하고 딥러닝을 이용해 학습을 하기로 했다. 본 논문에서는 실제 세계와 유사한 환경을 가지고 있는 자동차 게임을 이용하여 자율 주행을 시도 했다. 자율 주행 시 많이 쓰이는 End to End 방법으로 데이터를 수집하면 두 가지 데이터가 저장된다. 하나는 이미지 데이터고 두 번째는 방향키 데이터다. 이러한 데이터들을 numpy 타입으로 40분간 데이터를 수집한 후 딥러닝에 많이 쓰이는 tensorflow를 사용하여 구현한 CNN을 이용하여 학습이 되는 것을 확인을 하고 91.9%의 정확도를 얻었다. 이를 기반으로 실세계에서의 사용 가능성을 확인했다.

Location-based UCI Sensor time series data analysis (위치 기반의 UCI Sensor 시계열 데이터 분석)

  • Chang, Il-Sik;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.7-8
    • /
    • 2021
  • 인공지능 기술과 서비스는 딥러닝을 중심으로 한 기계학습 기술의 급속한 발전에서 원인을 둔다. 딥러닝 발전 요인으로 GPU등 하드웨어 발전, 기술 공유, 대규모 학습데이터 구축 및 공개를 들 수 있다. 데이터 셋에 관련하여 센서를 이용한 데이터셋의 경우 단순히 많은 데이터셋의 확보뿐 아니라 적절한 위치 및 환경에 따른 고려가 필요하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 위치별 시계열 데이터를 딥러닝을 이용하여 분석하고, 위치별 정확도와 손실을 계산한다. 또한 계산된 결과를 히트맵을 통하여 시각화하여 직관적인 이해를 높인다. 또한 위치별 정확도가 높은 상위 5개의 위치에서 앙상블 방법을 통한 성능의 향상을 확인 하였다.

  • PDF

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

Lane Departure Warning System using Deep Learning (딥러닝을 이용한 차로이탈 경고 시스템)

  • Choi, Seungwan;Lee, Keontae;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • As artificial intelligence technology has been developed rapidly, many researchers who are interested in next-generation vehicles have been studying on applying the artificial intelligence technology to advanced driver assistance systems (ADAS). In this paper, a method of applying deep learning algorithm to the lane departure warning system which is one of the main components of the ADAS was proposed. The performance of the proposed method was evaluated by taking a comparative experiments with the existing algorithm which is based on the line detection using image processing techniques. The experiments were carried out for two different driving situations with image databases for driving on a highway and on the urban streets. The experimental results showed that the proposed system has higher accuracy and precision than the existing method under both situations.

Autonomous landing of drones using deep learning GPS-denied environments (GPS 음영지역에서 딥러닝을 활용한 드론 자율 착륙)

  • Chae-Hui Park;Sung-Mahn Ahn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.15-18
    • /
    • 2023
  • UAV는 군사용을 처음 시작으로 근래에 취미용 드론의 급격한 성장과 더불어 최근 기후변화, 교통혼잡, 범죄 예방 등 여러 사회 문제 해결을 위한 드론의 필요성이 증가함에 따라 건설, 교통, 농업, 에너지, 엔터테인먼트 등 다양한 산업과 여러 사회 서비스로 그 필요성이 확대되고 있다. 본 연구는 이러한 사회적 흐름에 따라 인공지능 기술을 통한 드론의 활용성을 확대하고 GPS 수신이 안 되는 환경에서 딥러닝 객체 탐지 모델을 활용한 자율 착륙을 연구를 목표로 한다. GPS 신호는 실내와 같은 환경 혹은 지하, 교량 아래, 산속 등과 같은 곳에서는 수신이 어렵다. 이를 극복하고자 GPS 신호수신이 어려운 지역에서 GPS 수신기를 통해 받는 위치 정보 대신 드론에 장착된 카메라를 통해 전달받는 영상에서 착륙할 지점을 인식하고 카메라를 통해 받는 영상 정보만 이용하여 목표지점으로 하강하는 방식으로 자율 착륙을 유도한다. 딥러닝 중 경량화 모델을 활용하여 소형 드론에서 실시간으로 착륙 지점을 감지하기 위해 최적화 과정을 진행해 실시간 자율 착륙이 가능하게 하였다. 본 연구를 통해 드론의 착륙에 있어 GPS 수신기와 사람의 조종에 대한 의존도를 낮출 수 있을 것으로 기대한다.

  • PDF

Implementation of Automatic Coin Sorting Smart Piggy Bank using Deep Learning based Image Recognition Technology (딥러닝 기반 이미지 인식 기술을 활용한 동전 자동분류 스마트 저금통)

  • Yu, Yeon Seung;Jang, Young Jin;Sim, Hyeon Jeong;Lee, Seul Bi;Kim, Cheong Ghil
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.320-322
    • /
    • 2020
  • 기계학습은 인공지능의 한 클래스로 최근 이미지 및 음성인식, 지능적 웹 검색, 자율 주행 자동차 등의 영역에서 성공적 발전을 바탕으로 우리의 일상에 폭넓게 이용되고 있다. 본 논문에서는 Keras 오픈소스 라이브러리를 이용해 딥러닝을 이용한 기계학습 기반의 동전 인식 소프트웨어를 구현하였고, 이를 이용해 동전 자동분류 스마트 저금통을 설계하였다. 동작 검증을 위하여 스마트 저금통의 모든 발생 이벤트는 Parse-server와 mongoDB를 이용하여 시각화 및 어플리케이션 및 웹사이트를 연결하였다.

Tactile Vision Substitution Method using Deep Learning-based Optical Flow Estimation (딥러닝 기반 옵티컬 플로우 추정을 사용한 시각 정보의 촉각 대체 기술)

  • Shin, Yujeong;Kim, Mooseop;Jeong, Chi Yoon
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.417-419
    • /
    • 2022
  • 감각대체기술은 손상된 감각 정보를 다른 감각으로 전환하여 전달하는 기술로써 기존의 시각장애인을 위한 시각 정보의 촉각 대체 기술은 주로 거리 정보나 물체의 윤곽선 정보를 전달하여 사용자가 주변 환경을 이해하는 데 어려움이 있었다. 이를 해결하기 위해 본 논문에서는 딥러닝을 사용하여 사용자 주변의 모션 정보를 분석하고, 이를 촉각 정보로 전달함으로써 사용자가 주변 상황 정보를 인지 할 수 있는 방법을 제안하였다. 제안 방법과 기존의 윤곽선 정보 전달 방법을 사용자 실험을 통하여 비교하였을 때, 제안 방법이 영상 속 물체의 움직임 정보를 이해하는 데에 더욱 효과적임을 확인하였다.

A Research on stock price prediction based on Deep Learning and Economic Indicators (거시지표와 딥러닝 알고리즘을 이용한 자동화된 주식 매매 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.267-272
    • /
    • 2020
  • Macroeconomics are one of the indicators that are preceded and analyzed when analyzing stocks because it shows the movement of a country's economy as a whole. The overall economic situation at the national level, such as national income, inflation, unemployment, exchange rates, currency, interest rates, and balance of payments, has a great affect on the stock market, and economic indicators are actually correlated with stock prices. It is the main source of data for analysts to watch with interest and to determine buy and sell considering the impact on individual stock prices. Therefore, economic indicators that impact on the stock price are analyzed as leading indicators, and the stock price prediction is predicted through deep learning-based prediction, after that the actual stock price is compared. If you decide to buy or sell stocks by analysis of stock prediction, then stocks can be investments, not gambling. Therefore, this research was conducted to enable automated stock trading by using macro-indicators and deep learning algorithms in artificial intelligence.

A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model (딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템)

  • Bang, Ji-Hyeon;Park, Jun;Park, Sung-Wook;Kim, Jun-Yung;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.9-18
    • /
    • 2022
  • Recently, research and system using AI is rapidly increasing in various fields. Smart farm using artificial intelligence and information communication technology is also being studied in agriculture. In addition, data-based precision agriculture is being commercialized by convergence various advanced technology such as autonomous driving, satellites, and big data. In Korea, the number of commercialization cases of facility agriculture among smart agriculture is increasing. However, research and investment are being biased in the field of facility agriculture. The gap between research and investment in facility agriculture and open-air agriculture continues to increase. The fields of fruit trees and plant factories have low research and investment. There is a problem that the big data collection and utilization system is insufficient. In this paper, we are proposed the system for determining the fruit tree growth stage using a deep learning-based object detection model. The system was proposed as a hybrid app for use in agricultural sites. In addition, we are implemented an object detection function for the fruit tree growth stage determine.