• 제목/요약/키워드: 인공지능-딥러닝

검색결과 699건 처리시간 0.027초

인공지능 및 딥러닝 기법의 수자원 분야 적용 현황 (Application of Artificial Intelligence and Deep Learning Technique in Water Resources)

  • 황석환;윤정수;강나래;노희성;오병화;이정하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.28-28
    • /
    • 2018
  • 본 연구에서는 최근 급격히 발달하고 있는 인공지능 및 딥러닝 기술에 대한 소개와 수문기상을 포함한 수자원 분야에의 적용사례를 검토하였다. 본 연구의 목적은 우리 삶의 일부가 되어 가고 있는 인공지능 및 딥러닝 기술을 이해하고 보다 실효적인 측면에서 수자원 분야에 적용 활용하기 위한 연구 가이드라인을 제시하기 위함이다. 이를 위해 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수자원 분야에서 이러한 기술이 요구되는 분야와 신기술(emerging techniques)을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다. 이를 통해 인공지능 및 딥러닝 기술 적용의 장점과 한계를 고찰하고 향후 집중 연구가 필요한 기술을 제시하였다.

  • PDF

딥러닝 분산처리 기술동향 (Trends on Distributed Frameworks for Deep Learning)

  • 안신영;박유미;임은지;최완
    • 전자통신동향분석
    • /
    • 제31권3호
    • /
    • pp.131-141
    • /
    • 2016
  • 최근 알파고를 통해 인공지능 기술이 전 세계인의 이목을 집중시켰던 반면, 인공지능 연구자들은 인공지능 부활에 결정적 역할을 한 딥러닝 기술에 주목하고 있다. 딥러닝은 다계층 인공신경망 기반의 기계학습 기술로서 최근 컴퓨터 비전, 음성인식, 자연어 처리 분야에서 인식 성능을 높이는 데 중요한 역할을 하고 있다. 딥러닝 기술을 이용하여 기계가 수천만장의 이미지를 학습하여 객체를 인식하게 하고, 수천 시간의 음성 데이터를 학습하여 사람의 말을 알아듣게 처리하는 데에는 다수의 고성능 컴퓨터가 필요하다. 따라서 딥러닝에는 다수의 컴퓨터를 효율적으로 이용하기 위한 분산처리 기술이 필수적이며 관련 연구들이 활발히 진행되고 있다. 이에 본고는 다중 컴퓨터 노드들에서 딥러닝 모델을 분산처리할 수 있는 기존의 프레임워크들을 비교 분석하고 딥러닝 분산처리 기술에 대한 발전 방향을 전망한다.

  • PDF

딥러닝 인공지능을 활용한 사물인터넷 비즈니스 모델 설계 (Ensure intellectual property rights for 3D pringting 3D modeling design)

  • 이용규;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.351-354
    • /
    • 2016
  • 알파고와 이세돌의 바둑대결은 세계적인 관심사를 갖으며 알파고의 승리로 끝났다. 알파고의 핵심 기능은 바둑기보를 컴퓨터 스스로 공부하는 딥러닝 시스템이었다. 이후로 인공지능을 활용한 딥러닝 시스템은 활용도가 검증되었다고 할 수 있다. 최근에 정부에서 사물인터넷을 활성화하기 위하여 사물인터넷기본법을 통과시키고 비즈니스모델을 개발하고 있다. 본 논문에서는 딥러닝 인공지능을 활용한 사물인터넷 비즈니스 환경을 분석하고 특화된 비즈니스 모델을 설계하겠다.

  • PDF

딥 러닝 프레임워크의 비교 및 분석 (A Comparison and Analysis of Deep Learning Framework)

  • 이요섭;문필주
    • 한국전자통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.115-122
    • /
    • 2017
  • 딥 러닝은 사람이 가르치지 않아도 컴퓨터가 스스로 사람처럼 학습할 수 있는 인공지능 기술이다. 딥 러닝은 세상을 이해하고 감지하는 인공지능을 개발하는데 가장 촉망받는 기술이 되고 있으며, 구글, 바이두, 페이스북 등이 가장 앞서서 개발을 하고 있다. 본 논문에서는 딥 러닝을 구현하는 딥 러닝 프레임워크의 종류에 대해 논의하고, 딥 러닝 프레임워크의 영상과 음성 인식 분야의 효율성에 대해 비교, 분석하고자 한다.

딥러닝과 설명 가능한 인공지능을 이용한 유방암 판별 (Classification of Breast Cancer using Explainable A.I. and Deep learning)

  • 하수희;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.99-100
    • /
    • 2022
  • 본 논문에서는 유방암 초음파 이미지를 학습한 multi-modal 구조를 이용하여 유방암을 판별하는 인공지능을 제안한다. 학습된 인공지능은 유방암을 판별과 동시에, 설명 가능한 인공지능 기법과 ROI를 함께 사용하여 종양의 위치를 나타내준다. 시각적으로 판단 근거를 제시하기 때문에 인공지능의 판단 신뢰도는 더 높아진다.

  • PDF

인공지능 기반 스테가노그래피 생성 기술 최신 연구 동향 (Research Trends in Steganography Based on Artificial Intelligence)

  • 김현지;임세진;김덕영;윤세영;서화정
    • 스마트미디어저널
    • /
    • 제12권4호
    • /
    • pp.9-18
    • /
    • 2023
  • 스테가노그래피는 데이터의 존재 자체를 은닉하여 데이터를 보호하는 기술이다. 최근에는 인공지능 기술이 발달함에 따라 딥러닝 기반의 스테가노그래피 기법들이 개발되고 있다. 딥러닝 기술은 데이터에 대한 고차원의 특징을 분석하여 학습할 수 있으므로 스테가노그래피의 성능과 품질을 개선시킬 수 있다. 본 논문에서는 이미지데이터에 대한 딥러닝 기반의 스테가노그래피 기술의 최신 연구 동향에 대해 살펴보도록 한다.

인공지능과 핀테크 보안

  • 최대선
    • 정보보호학회지
    • /
    • 제26권2호
    • /
    • pp.35-38
    • /
    • 2016
  • 본 논문에서는 핀테크 보안에 활용 가능한 딥러닝 기술을 살펴본다. 먼저 인공지능과 관련된 보안 이슈를 인공지능이 사람을 위협하는 상황에 대한 보안(Security FROM AI), 인공지능 시스템이나 서비스를 악의적인 공격으로부터 보호하는 이슈(Security OF AI), 인공지능 기술을 활용해 보안 문제를 해결하는 것(Security BY AI) 3가지로 구분하여 살펴본다. Security BY AI의 일환으로 딥러닝에 기반한 비정상탐지(anomaly detection)과 회귀분석(regression)기법을 설명하고, 이상거래탐지, 바이오인증, 피싱, 파밍 탐지, 본인확인, 명의도용탐지, 거래 상대방 신뢰도 분석 등 핀테크 보안 문제에 활용할 수 있는 방안을 살펴본다.

'인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석 (Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning')

  • 박홍진
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.283-292
    • /
    • 2020
  • 4차 산업혁명의 대표적인 이미지 중 하나인 인공지능은 2016년 알파고 이후에 인공지능 인식이 매우 높아져 있다. 본 논문은 학국교육학술정보원에서 제공하는 국내 논문 중 '인공지능', '기계학습', '딥 러닝'으로 검색된 국내 발표 논문에 대해서 분석하였다. 검색된 논문은 약 1만여건이며 논문 동향을 파악하기 위해 빈도분석과 토픽 모델링, 의미 연결망을 이용하였다. 추출된 논문을 분석한 결과, 2015년에 비해 2016년에는 인공지능 분야는 600%, 기계학습은 176%, 딥 러닝 분야는 316% 증가하여 알파고 이후에 인공지능 분야의 연구가 활발히 진행됨을 확인할 수 있었다. 또한, 2018년 부터는 기계학습보다 딥 러닝 분야가 더 많이 연구 발표되고 있다. 기계학습에서는 서포트 벡터 머신 모델이, 딥 러닝에서는 텐서플로우를 이용한 컨볼루션 신경망이 많이 활용되고 있음을 알 수 있었다. 본 논문은 '인공지능', '기계학습', '딥 러닝' 분야의 향후 연구 방향을 설정하는 도움을 제공할 수 있다.

페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구 (Cryptocurrency automatic trading research by using facebook deep learning algorithm)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.359-364
    • /
    • 2021
  • 최근 인공지능의 딥러닝과 머신러닝을 이용한 예측시스템에 관한 연구가 활발히 진행되고 있다. 인공지능의 발전으로 인해 투자관리자의 역할을 인공지능을 대신하고 있으며, 투자관리자보다 높은 수익률로 인해 점차 인공지능으로 거래를 하는 알고리즘 거래가 보편화하고 있다. 알고리즘 매매는 인간의 감정을 배제하고 조건에 따라 기계적으로 매매를 진행하기 때문에 장기적으로 접근했을 때 인간의 매매 수익률보다 높게 나온다. 인공지능의 딥러닝 기법은 과거의 시계열 데이터를 학습하고 미래를 예측하여 인간처럼 학습하게 되고, 변화하는 전략에 대응할 수 있어 활용도가 증가하고 있다. 특히 LSTM기법은 과거의 데이터 일부를 기억하거나 잊어버리는 형태로 최근의 데이터의 비중으로 높여 미래 예측에 사용하고 있다. 최근 facebook에서 개발한 인공지능 알고리즘인 fbprophet은 높은 예측 정확도를 자랑하며 주가나 암호화폐 시세 예측에 사용되고 있다. 따라서 본 연구는 fbprophet을 활용하여 실제 값과 차이를 분석하고 정확한 예측을 위한 조건들을 제시하여 암호화폐 자동매매를 하기 위한 새로운 알고리즘을 제공하여 건전한 투자 문화를 정착시키는 데 이바지하고자 한다.

인공지능 보안 공격 및 대응 방안 연구 동향

  • 류권상;최대선
    • 정보보호학회지
    • /
    • 제30권5호
    • /
    • pp.93-99
    • /
    • 2020
  • 인공지능은 다양한 분야에서 사람을 뛰어넘는 성능을 보여주고 있어 다양한 서비스에 활용되어 삶의 편리함을 주고 있다. 하지만, 인공지능의 핵심 기술인 딥러닝은 많은 보안 취약점을 가지고 있어 딥러닝 보안 문제에 대한 관심이 증가하고 있다. 본 논문은 인공지능 보안 취약점을 유발하는 각 공격 유형에 대한 최신 연구와 보안 위협에 대응하기 위한 방어 기술에 대한 최신 연구에 대해 설명한다.