• 제목/요약/키워드: 인공지능 확산

검색결과 145건 처리시간 0.031초

Social Cataloging e-book platform for readers (전자책 사용자를 위한 차세대 소통 플랫폼 제안)

  • Kwon, Seong-Min;Kim, Tae-Eun;Lee, Jong-Ho;Jung, Yoonjin;Kim, Eun-Ji
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.597-600
    • /
    • 2020
  • 전자책을 이용한 독서가 확산되면서, 책에 대한 소감도 온라인으로 공유하고 싶어하는 독자들의 욕구가 생겨나고 있다. 따라서, 본 논문은 전자책 독자들이 책을 소비함과 동시에 다른 독자들과 소통하는 창구를 마련하고자 한다. 이러한 온라인 독서 플랫폼을 통해 사용자들의 독서 경험이 확장될 것을 기대한다. 또한, 사용자들의 소감 데이터를 기반으로 인공 지능 분석한 결과를 제공한다. 이를 통해, 다른 사용자들이 책에 대해 느낀 전반적인 인상을 알 수 있으며 기존 전자책과 차별화된 서비스라는 점에서 의의가 있다.

Runtime Cryptographic Monitoring System based TC-BPF (TC-BPF 기반 실시간 TLS 암호화 모니터링 시스템)

  • Hohyeon Cha;Juyong Shin;Jaehyun Nam
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.220-221
    • /
    • 2024
  • 클라우드 도입이 확산됨에 따라 보안 위협 역시 지속적으로 증가하고 있다. 특히, 클라우드 시스템에서 데이터를 안전하게 관리하기 위해 TLS 프로토콜을 사용해 네트워크 연결을 암호화하지만, 관리자의 잘못된 설정으로 인해 데이터 유출의 위험이 존재할 수 있다. 본 연구에서는 TLS 프로토콜을 통해 암호화된 통신에서 사용되는 설정 정보를 확인하고, Traffic Control BPF (TC-BPF) 기술을 적용하여 현 클라우드 시스템 내 TLS 구성 정보를 수집하는 방법을 제안한다. 또한, 이를 바탕으로 수집된 정보를 기반으로 취약한 설정을 분석하고 로그를 생성하는 시스템을 구현하였다. 그 결과, 네트워크 지연 시간에 약 1.3%의 성능 저하만을 발생시켰으며, 수집된 로그를 기반으로 암호화 알고리즘의 취약성을 효과적으로 분류할 수 있었다.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • 제20권3호
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Agricultural Applicability of AI based Image Generation (AI 기반 이미지 생성 기술의 농업 적용 가능성)

  • Seungri Yoon;Yeyeong Lee;Eunkyu Jung;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • 제33권2호
    • /
    • pp.120-128
    • /
    • 2024
  • Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.

A study on the Change of Perception of Public Health before and after COVID-19 (COVID-19 발생 전·후 공공의료에 대한 인식변화)

  • Kim, Yu Jeong;Lee, Dong Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.367-370
    • /
    • 2022
  • 본 연구는 코로나19 발생 전·후 공공의료를 둘러싼 사회적 인식변화를 뉴스빅데이터를 통해 파악하고자 시도되었다. 뉴스빅데이터는 코로나19 확진자가 처음 발생한 2020년 1월을 기준으로 나누었으며, 코로나19 발생 이전(2018년 1월~2019년 12월, 총 24개월) 40,834건과 코로나19가 발병 이후(2020년 1월~2021년 12월, 총 21개월) 61,761건이었다. 수집된 빅데이터는 R 4.1.1 for Windows를 활용하여 단어 빈도 분석, 연관규칙분석을 실시하였다. 연구결과, 코로나19 발생 전후 뉴스기사에서 공공의료를 둘러싼 핵심어를 비교할 때 코로나19 발생 후에 발생 전보다 큰 폭으로 상승한 단어는 '확산'(664%), '대응'(658%), '의사'(518%), '상황'(504%), '공공병원'(486%), '의료진'(455%), '확충'(324%), '인력'(305%), '어려움'(272%), '정부'(247%)순으로 나타났다. 코로나19 발생 전후 공공의료를 둘러싼 키워드의 연관규칙 분석을 통해서 의료의 패러다임이 일자리 산업에서 감염증 대응을 위한 보건의료로 전환되는 것을 알수 있었다.

  • PDF

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • 제26권4호
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Designing an App Inventor Curriculum for Computational Thinking based Non-majors Software Education (컴퓨팅 사고 기반의 비전공자 소프트웨어 교육을 위한 앱 인벤터 교육과정 설계)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • 제7권1호
    • /
    • pp.61-66
    • /
    • 2017
  • As the fourth industrial revolution becomes more popular and advanced services such as artificial intelligence and Internet of Things technology are widely commercialized, awareness of the importance of software is spreading. Recently, software education has been taught not only in elementary school and college but also in college. Also, there is a growing interest in computational thinking needed to solve problems through computing methodology and model. The purpose of this study is to design an app inventor course for non-majors software education based on computational thinking. As a result of the study, six detailed competencies of computational thinking were derived, and six detailed competencies were mapped to the app inventor learning elements. In addition, based on the computational thinking modeling, I designed an app inventor class for students who participated in IT curriculum of university liberal arts curriculum.

Automatic Object Extraction from Electronic Documents Using Deep Neural Network (심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구)

  • Jang, Heejin;Chae, Yeonghun;Lee, Sangwon;Jo, Jinyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제7권11호
    • /
    • pp.411-418
    • /
    • 2018
  • With the proliferation of artificial intelligence technology, it is becoming important to obtain, store, and utilize scientific data in research and science sectors. A number of methods for extracting meaningful objects such as graphs and tables from research articles have been proposed to eventually obtain scientific data. Existing extraction methods using heuristic approaches are hardly applicable to electronic documents having heterogeneous manuscript formats because they are designed to work properly for some targeted manuscripts. This paper proposes a prototype of an object extraction system which exploits a recent deep-learning technology so as to overcome the inflexibility of the heuristic approaches. We implemented our trained model, based on the Faster R-CNN algorithm, using the Google TensorFlow Object Detection API and also composed an annotated data set from 100 research articles for training and evaluation. Finally, a performance evaluation shows that the proposed system outperforms a comparator adopting heuristic approaches by 5.2%.

Changes in the Industrial Structure caused by the IoT and AI (사물인터넷과 AI가 가져올 산업구조의 변화)

  • Kim, Jang-Hwan
    • Convergence Security Journal
    • /
    • 제17권5호
    • /
    • pp.93-99
    • /
    • 2017
  • Recently IoT(Internet of Things) service industry has grown very rapidly. In this paper, we investigated the changes in IoT service industry as well as new direction of human life in future global society. Under these changing market conditions, competition has been also changed into global and ecological competition. But compared to the platform initiatives and ecological strategies of global companies, Korean companies' vision of building ecosystems is still unclear. In addition, there is a need of internetworking between mobile and IoT services. IoT security Protocol has weakness of leaking out information from Gateway which connected wire and wireless communication. As such, we investigate the structure of IoT and AI service ecosystem in order to gain strategic implications and insights for the security industry in this paper.

The Design of Application Model using Manufacturing Data in Protection Film Process for Smart Manufacturing Innovation (스마트 제조혁신을 위한 보호필름 공정 제조데이터의 활용모델 설계)

  • Cha, ByungRae;Park, Sun;Lee, Seong-ho;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • 제8권3호
    • /
    • pp.95-103
    • /
    • 2019
  • The global manufacturing industry has reached the limit to growth due to a long-term recession, the rise of labor cost and raw material. As a solution to these difficulties, we promote the 4th Industry Revolution based on ICT and sensor technology. Following this trend, this paper proposes the design of a model using manufacturing data in the protection film process for smart manufacturing innovation. In the protective film process, the manufacturing data of temperature, pressure, humidity, and motion and thermal image are acquired by various sensors for the raw material blending, stirring, extrusion, and inspection processes. While the acquired manufacturing data is stored in mass storage, A.I. platform provides time-series image analysis and its visualization.