• Title/Summary/Keyword: 인공지능 프로그램

Search Result 355, Processing Time 0.032 seconds

Analysis of research status on domestic AI education (국내 인공지능 교육에 대한 연구 현황 분석)

  • Park, Mingyu;Han, Kyujung;Sin, Subeom
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.683-690
    • /
    • 2021
  • The purpose of this study is to identify research trends on artificial intelligence education. We analyzed 164 domestic journal papers related to AI education published since 2016. The criteria for papers analysis are number of publications by year, journal name, research topic, research type, data collection method, research subject, and subject. The main research areas and areas that require further research are reviewed. The method of the study was analyzed based on the topic and summary of the selected papers, but the text was checked if it was unclear. As a result of the study, research on 'artificial intelligence education' started in earnest after 2017, and has been rapidly increasing in recent years. As a result of the analysis, there were many studies on artificial intelligence education programs and content development, and artificial intelligence perception and image. As for the type of research, there were many quantitative studies, and the development research method was used a lot as a data collection method. In the study subjects, elementary school had a high proportion, and in subject, it was found that there were many practicial subject(technology) dealing with artificial intelligence contents.

Analysis of research status on domestic AI education (국내 인공지능 교육에 대한 연구 현황 분석)

  • Park, Mingyu;Han, Kyujung;Sin, Subeom
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.69-76
    • /
    • 2021
  • The purpose of this study is to identify research trends on artificial intelligence education. We analyzed 164 domestic journal papers related to AI education published since 2016. The criteria for thesis analysis are number of publications by year, journal name, research topic, research type, data collection method, research subject, and subject. The main research areas and areas that require further research are reviewed. The method of the study was analyzed based on the topic and summary of the selected thesis, but the text was checked if it was unclear. As a result of the study, research on 'artificial intelligence education' started in earnest after 2017, and has been rapidly increasing in recent years. As a result of the analysis, there were many studies on artificial intelligence education programs and content development, and artificial intelligence perception and image. As for the type of research, there were many quantitative studies, and the development research method was used a lot as a data collection method. In the study subjects, elementary school had a high proportion, and in subject, it was found that there were many practicial subject(technology) dealing with artificial intelligence contents.

  • PDF

Development of Data Driven Flood Arrival Time and Water Level Estimation Simulator (데이터 기반 홍수 도달시간 및 수위예측 시뮬레이터 개발)

  • Lee, Ho Hyun;Lee, Dong Hun;Hong, Sung Taek;Kim, Sung Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.104-104
    • /
    • 2022
  • 임진강 수계는 북측 지역이 다수를 차지하는 유역 특성으로 예고 없는 상류 급방류, 강우 등으로 인해 댐 운영에 근본적 어려움이 있으며, 이에 따라 홍수조절지 및 댐 하류 계측 가능 지역의 취득 자료를 고려한 하천 수위 변화에 대한 사전 예측을 필요로 하고 있다. 홍수기 하천 도달시간 및 수위예측 기법으로는 물리 기반 및 데이터 기반 모델들이 다양하게 연구되어 왔으며, 일부 연구성과들은 현업에 활용하고 있다. 물리기반 모델은 하천 지형 변화에 대한 자료 취득 및 분석에 많은 시간을 요하는 단점은 있으나, 설명 가능한 모델을 구현할 수 있을 것으로 사료 된다. 반면, 데이터 기반 인공지능 모델은 짧은 시간 및 비용으로 모델을 개발할 수 있으나, 복잡한 알고리즘구현 시 설명이 불가하여 일관성을 의심 받을 수 있다. 본 논문에서는 홍수 도달시간과 하류 수위 상승에 대하여 설명 가능한 인공지능 알고리즘 및 시뮬레이션 프로그램을 개발하고자 하였다. 홍수 도달시간 예측은 기존 조견표 방식에서 고려하지 않았던 홍수파의 영향을 추가 변수화 하고, 데이터의 전후처리를 통하여 도달시간을 예측하였다. 실시간 하류 수위 예측은 댐 방류량, 주변 강우, 조위 등을 고려하여 도달시간 후 수위를 예측할 수 있도록 구현하였으며, 자료 동화 기술을 일부 적용하였다. 미래 방류조건에 대한 시뮬레이션을 위해서는 미래 방류량, 예상 강우 입력 시 하천 지점별 수위 상승을 예측할 수 있도록 알고리즘 및 프로그램을 개발하였다. 이를 구현하기 위하여 다양한 인공지능 알고리즘을 이용한 학습, 유전자 알고리즘을 이용한 가중치 학습 제한 조건내 최적화, 수위파와 조위파의 중첩의 정리 등을 이용하여 예측 정확도 및 신뢰성을 제고 하였다. 인공지능 분석결과의 현업활용성 제고를 위하여 시뮬레이터 프로그램을 개발하여 현업에 적용하였다.

  • PDF

A Study on the Dataflow Diversity of Al accelerator (인공지능 가속기 데이터 흐름 다양성에 대한 연구)

  • Dong-Ju Lee;Yun-Heung Paek
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.482-484
    • /
    • 2023
  • 인공지능 가속기는 인공 지능 및 기계 학습 응용 프로그램의 연산을 더 빠르게 수행하도록 설계된 하드웨어 가속기이다. 인공지능 가속기 내에서 데이터가 효율적으로 처리되기 위해서는 그 흐름을 제어해야 한다. 데이터의 흐름을 제어하는 방법에 따라 가속기의 면적, 전력, 성능의 차이가 발생하는데, 그 다양한 데이터 흐름 제어방법에 대해 소개한다.

A Comparative Analysis of Contents Related to Artificial Intelligence in National and International K-12 Curriculum (국내외 초·중등학교 인공지능 교육과정 분석)

  • Lee, Eunkyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • As the importance of artificial intelligence(AI) education is emphasized recently, policies and researches are being promoted to develop the AI curriculum or courses for K-12 students in worldwide. In this study, researcher analysed a synthesis of contents and standards on AI education curriculum to present implications for AI education in the elementary and secondary schools. As a result, Korea and the United States are proposing national curriculum standards to provide the basis for AI curriculum establishment in school sites and to provide guidelines for various related policies such as teacher training programs. The EU's AI education is characterized by its curriculum and online courses to ensure that all citizens of the EU have AI literacy, rather than designating students or subjects at specific school levels. In terms of educational contents and levels, Korea, United States, and EU's curriculum or standards includes basics and applications related to machine learning and neural network based on the fundamental concepts and principles of artificial intelligence.

Stock prediction analysis through artificial intelligence using big data (빅데이터를 활용한 인공지능 주식 예측 분석)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1435-1440
    • /
    • 2021
  • With the advent of the low interest rate era, many investors are flocking to the stock market. In the past stock market, people invested in stocks labor-intensively through company analysis and their own investment techniques. However, in recent years, stock investment using artificial intelligence and data has been widely used. The success rate of stock prediction through artificial intelligence is currently not high, so various artificial intelligence models are trying to increase the stock prediction rate. In this study, we will look at various artificial intelligence models and examine the pros and cons and prediction rates between each model. This study investigated as stock prediction programs using artificial intelligence artificial neural network (ANN), deep learning or hierarchical learning (DNN), k-nearest neighbor algorithm(k-NN), convolutional neural network (CNN), recurrent neural network (RNN), and LSTMs.

Implementation of Artificial Intelligence Speech Recognition Text Repository for Elementary Career Counseling (초등 진로 상담을 위한 인공지능 음성 인식 텍스트 레포지토리 구현)

  • Yu, Minjeong;Ma, Youngji;Koo, Dukhoi
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.327-333
    • /
    • 2021
  • Currently development of the Artificial Intelligence technology is rapidly progressing in the era of the Fourth Industrial Revolution. The government is trying to improve the education of Artificial Intelligence and cultivating human resources. However there are very few cases where A.I technology is actually used in public education classes. Therefore we designed a text repository by implementing A.I speech recognition to provide career counseling for elementary school students. In the meantime, there have been many difficulties in giving advance consultations required for students' career counseling. In this study we suggested A.I speech recognition technology which can solve addressed problem and we planned various ways to make the program more educational. To conclude we expect A.I technology implemented in this study provides effective solution to career counseling.

  • PDF

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

A Study of fuzzing techniques and their development (최근 퍼징 기법들과 발전에 관한 연구)

  • Jun, So-Hee;Lee, Young-Han;Kim, Hyun-Jun;Paek, Yun-Heung
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.272-274
    • /
    • 2020
  • 최근 컴퓨터 프로그램의 크기가 증가하고 목적이 다양해지면서 프로그램의 취약점에 대한 위험이 증가하고 있다. 공격자 보다 먼저 프로그램 취약점을 찾아내기 위한 여러 기법들이 있다. 그 중 프로그램의 취약점을 보다 효율적으로 찾아내기 위한 기법 중 하나인 퍼징 (Fuzzing) 은 프로그램에 무작위로 입력 데이터를 입력하여 프로그램의 정의되지 않은 영역을 검증하는 기법이다. 이러한 입력 데이터를 최대한 적은 시간과 자원을 소모하여 생성하기 위해 인공지능과 퍼징을 결합하는 연구가 활발히 진행 중이다. 본 논문에서는 퍼징의 개념 및 종류에 대해 설명하고 퍼징과 인공지능이 결합된 최신 연구에 대해 서술한다.

A Design of Dynamic Lesson Planner in Intelligent Tutoring System (지능형 교수시스템에서 동적 레슨 플랜생성기의 설계)

  • 이재인;이재무
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 1997.10a
    • /
    • pp.39-52
    • /
    • 1997
  • 본 연구는 언어 교육용 프로그램을 개발하는 저작도구9authoring tool)와 학생들이 자율적으로 학습할 수 있는 지능형 컴퓨터 교사시스템(ITS : Intelligent Tutoring System)으 로 구성된 지능형 학습환경(Intelligent Learning Environment)을 설계한다. 특히, 범용시스 템에서 제공되는 불필요한 기능들을 제거하고 언어교육에 필요한 기능만을 가진 간편한 저 작도구의 설계와, 인공지능 기법을 이요하여 학생 개개인의 지식수준에 따라 차별화하여 지 능적으로 교육할 수 있는 지능형 교사시스템의 구성 방법을 제안한다.

  • PDF