• Title/Summary/Keyword: 인공지능 전공

Search Result 260, Processing Time 0.028 seconds

Software Education Method In Aviation Maintenance Training Course (항공정비사 교육과정에서 소프트웨어 교육방안)

  • Myung-Seob Yoon;Seong-Hyun Park;Kyu-Jun Yu;Koo-Rack Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.453-454
    • /
    • 2023
  • 4차산업 혁명의 대표 영역인 인공지능은 과학기술뿐 아니라 사회, 경제, 문화 등 우리 사회의 전 분야에 적용되어가고 있다. 이것은 교육기관에서 인공지능 관련 컴퓨터 전공자만이 아닌 여러 전공 각 분야의 전공자 또한 인공지능 교육을 받아야 함을 의미하는 것이다. 이에 따라 전 분야에 걸친 A·I융합 인재의 양성이 관심사항이 되고 있다. 본 논문에서는 항공정비사 양성을 위한 국토교통부 전문교육기관 지정기준에 제시된 교육과목 및 내용에 소프트웨어 교육을 위해 시스템 제어에 관한 이론/실습교육의 추가를 제안하였다. 제안한 교육내용은 항공정비 분야에서의 A·I융합 인재양성에 한 방안이 될 것이라 기대한다.

  • PDF

Exploration of Factors on Pre-service Science Teachers' Major Satisfaction and Academic Satisfaction Using Machine Learning and Explainable AI SHAP (머신러닝과 설명가능한 인공지능 SHAP을 활용한 사범대 과학교육 전공생의 전공만족도 및 학업만족도 영향요인 탐색)

  • Jibeom Seo;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2023
  • This study explored the factors influencing major satisfaction and academic satisfaction of science education major students at the College of Education using machine learning models, random forest, gradient boosting model, and SHAP. Analysis results showed that the performance of the gradient boosting model was better than that of the random forest, but the difference was not large. Factors influencing major satisfaction include 'satisfaction with science teachers in high school corresponding to the subject of one's major', 'motivation for teaching job', and 'age'. Through the SHAP value, the influence of variables was identified, and the results were derived for the group as a whole and for individual analysis. The comprehensive and individual results could be complementary with each other. Based on the research results, implications for ways to support pre-service science teachers' major and academic satisfaction were proposed.

Prediction of Cognitive Impairment Using Blood Gene Expression Based on Machine Learning (혈액 유전자 발현을 이용한 기계학습 기반 인지장애 예측)

  • Lee, Seungeun;Zhou, Yu;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.61-62
    • /
    • 2022
  • 알츠하이머성 치매는 현존하는 치료법이 없어 경도인지장애 단계에서의 예방이 중요하다. 지금까지의 알츠하이머 연구는 대부분이 뇌영상 마커와 뇌척수액 마커에 집중되어 있었으며, 경도 인지 장애 단계에서의 탐색은 더욱 적었다. 이러한 점에서 혈액 유전자 발현을 이용한 경도 인지장애 단계 예측은 인지 능력에 따른 관련 유전자 식별과 접근 가능한 진단 및 치료 바이오 마커 탐색에 기여할 수 있다. 그러나 유전자 발현 데이터의 경우 환자 수에 비해 높은 차원을 가지기 때문에 과적합을 막고 질병 관련 유전자를 식별하기 위해서는 데이터에서의 의미 있는 차원만을 뽑아내는 차원 축소가 선행되야 한다. 본 연구는 유전자 발현데이터에서의 인지장애 분류를 위해 차원 축소기법과 신경망을 적용하여 인지 장애 정도를 예측하였다. 그 결과, Lasso 이용 차원축소와 신경망을 이용하여 97%의 정확도로 정상과 조기 경도 인지장애, 후기 경도 인지장애 환자를 분류 할 수 있었으며, 더 적은 차원에서도 분류가 가능했다. 이는 혈액 유전자 발현을 이용해 경도 인지장애 단계를 예측한 첫 번째 연구이며, 인지능력 저하에 따른 혈액 유전자 발현의 연관성을 확인하고 향후 조기 진단, 치료 표적 탐색에 기여한다.

  • PDF

Research on Federated Learning with Differential Privacy (차분 프라이버시를 적용한 연합학습 연구)

  • Jueun Lee;YoungSeo Kim;SuBin Lee;Ho Bae
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.749-752
    • /
    • 2024
  • 연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.

The Performance Comparative Analysis System for Stock Price Forecasting on AI Environment (AI 기반환경의 주식 시세예측을 위한 성능 비교분석 시스템)

  • Lee, Cheol-Hyeon;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.127-128
    • /
    • 2022
  • 최근 많은 증권사 및 다양한 금융사기업에서 투자자의 주식투자를 돕는 투자자문 인공지능, 로보어드바이저를 제안하고 활용한다. 본 논문에서는 증권사 등에서 사용되고 있는 주식 시세예측 알고리즘의 성능을 상호 비교분석한다. 주식 시계열 데이터 예측에 용이한 4가지의 인공지능 알고리즘인 LSTM, GRU, 딥Q 네트워크강화학습, XGBoost 알고리즘의 성능을 분석하고 비교하는 시스템을 구현하였다. 본 연구에서는 구현된 성능 분석 시스템을 통해 어떤 알고리즘이 주식 시세를 예측하고 활용하기 위해 가장 좋은 성능을 가졌는지 비교분석하고 해당 시스템의 결과분석이 주식예측에 어떠한 영향을 주는지를 평가한다.

  • PDF

A Study on Adversarial AI Attack and Defense Techniques (적대적 AI 공격 및 방어 기법 연구)

  • Mun, Hyun-Jeong;Oh, Gyu-Tae;Yu, Eun-Seong;Lm, Jeong-yoon;Shin, Jin-Young;Lee, Gyu-Young
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1022-1024
    • /
    • 2022
  • 최근 인공지능 기술이 급격하게 발전하고 빠르게 보급되면서, 머신러닝 시스템을 대상으로 한 다양한 공격들이 등장하기 시작하였다. 인공지능은 많은 강점이 있지만 인위적인 조작에 취약할 수 있기 때문에, 그만큼 이전에는 존재하지 않았던 새로운 위험을 내포하고 있다고 볼 수 있다. 본 논문에서는 데이터 유형 별 적대적 공격 샘플을 직접 제작하고 이에 대한 효과적인 방어법을 구현하였다. 영상 및 텍스트 데이터를 기반으로 한 적대적 샘플공격을 방어하기 위해 적대적 훈련기법을 적용하였고, 그 결과 공격에 대한 면역능력이 형성된 것을 확인하였다.

Analysis and Design of Arts and Culture Content Creation Tool powered by Artificial Intelligence (인공지능 기반 문화예술 콘텐츠 창작 기술 분석 및 도구 설계)

  • Shin, Choonsung;Jeong, Hieyong
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.489-499
    • /
    • 2021
  • This paper proposes an arts and culture content creation tool powered by artificial intelligence. With the recent advances in technologies including artificial intelligence, there are active research activities on creating art and culture contents. However, it is still difficult and cumbersome for those who are not familiar with programming and artificial intelligence. In order to deal with the content creation with new technologies, we analyze related creation tools, services and technologies that process with raw visual and audio data, generate new media contents and visualize intermediate results. We then extract key requirements for a future creation tool for creators who are not familiar with programming and artificial intelligence. We finally introduce an intuitive and integrated content creation tool for end-users. We hope that this tool will allow creators to intuitively and creatively generate new media arts and culture contents based on not only understanding given data but also adopting new technologies.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

Movie Revies Sentiment Analysis Considering the Order in which Sentiment Words Appear (감성 단어 등장 순서를 고려한 영화 리뷰 감성 분석)

  • Kim, Hong-Jin;Kim, Dam-Rin;Kim, Bo-Eun;Oh, Shin-Hyeok;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.313-316
    • /
    • 2020
  • 감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.

  • PDF

A Study on the Development of Intelligent Logistics Classification Solution in Logistics Warehouse (물류창고내 지능형 물류 분류 솔루션 개발에 관한 연구)

  • So-Hyeon Ahn;Ju-Hyeon Kim;Su-Hyun Park;Joo-Young, Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1086-1087
    • /
    • 2023
  • 본 논문은 물류창고 내 컨베이어벨트에서 자동으로 화물의 크기와 무게를 분석하고 이를 인공지능을 기반으로 분류하는 기술에 관한 연구를 다루고 있다. 우리의 연구를 통해 넓은 물류창고에서 전체 분류 과정을 모니터링할 수 있으며, 웹사이트를 활용하여 원거리에서도 물류 분류 과정을 실시간으로 확인 가능하게 한다. 또한 문제 발생 시 기록을 남겨 관리자 간에 관리, 감독이 원활하도록 도와준다.