• Title/Summary/Keyword: 인공지능 전공

Search Result 260, Processing Time 0.022 seconds

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part II - Vulnerability Assessment for PM2.5 in the Schools (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part II - 학교 미세먼지 범주화)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1891-1900
    • /
    • 2021
  • Fine particulate matter (FPM; diameter ≤ 2.5 ㎛) is frequently found in metropolitan areas due to activities associated with rapid urbanization and population growth. Many adolescents spend a substantial amount of time at school where, for various reasons, FPM generated outdoors may flow into indoor areas. The aims of this study were to estimate FPM concentrations and categorize types of FPM in schools. Meteorological and chemical variables as well as satellite-based aerosol optical depth were analyzed as input data in a random forest model, which applied 10-fold cross validation and a grid-search method, to estimate school FPM concentrations, with four statistical indicators used to evaluate accuracy. Loose and strict standards were established to categorize types of FPM in schools. Under the former classification scheme, FPM in most schools was classified as type 2 or 3, whereas under strict standards, school FPM was mostly classified as type 3 or 4.

Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis (PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증)

  • Baek, Su-Jin;Park, So-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.201-207
    • /
    • 2021
  • As artificial intelligence gradually expands into jobs, iIt is necessary to nurture talents with AI literacy capabilities required for non-majors. Therefore, in this study, based on the necessity and current status of AI education, AI literacy competency improvement education was conducted for non-majors so that AI learning could be sustainable in relation to future majors. For non-majors at University D, problem-solving solutions through project-based data analysis and visualization were applied over 15 weeks, and the AI ability improvement and effectiveness of learners before and after education were analyzed and verified. As a result, it was possible to confirm a statistically significant level of positive change in the learners' data analysis and utilization ability, AI literacy ability, and AI self-efficacy. In particular, it not only improved the learners' ability to directly utilize public data to analyze and visualize it, but also improved their self-efficacy to solve problems by linking this with the use of AI.

Estimation of High-resolution Sea Wind in Coastal Areas Using Sentinel-1 SAR Images with Artificial Intelligence Technique (Sentinel-1 SAR 영상과 인공지능 기법을 이용한 연안해역의 고해상도 해상풍 산출)

  • Joh, Sung-uk;Ahn, Jihye;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1187-1198
    • /
    • 2021
  • Sea wind isrecently drawing attraction as one of the sources of renewable energy. Thisstudy describes a new method to produce a 10 m resolution sea wind field using Sentinel-1 images and low-resolution NWP (Numerical Weather Prediction) data with artificial intelligence technique. The experiment for the South East coast in Korea, 2015-2020,showed a 40% decreased MAE (Mean Absolute Error) than the generic CMOD (C-band Model) function, and the CC (correlation coefficient) of our method was 0.901 and 0.826, respectively, for the U and V wind components. We created 10m resolution sea wind maps for the study area, which showed a typical trend of wind distribution and a spatially detailed wind pattern as well. The proposed method can be applied to surveying for wind power and information service for coastal disaster prevention and leisure activities.

Development of Artificial Intelligence Model for Outlet Temperature of Vaporizer (기화 설비의 토출 온도 예측을 위한 인공지능 모델 개발)

  • Lee, Sang-Hyun;Cho, Gi-Jung;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • Ambient Air Vaporizer (AAV) is an essential facility in the process of generating natural gas that uses air in the atmosphere as a medium for heat exchange to vaporize liquid natural gas into gas-state gas. AAV is more economical and eco-friendly in that it uses less energy compared to the previously used Submerged vaporizer (SMV) and Open-rack vaporizer (ORV). However, AAV is not often applied to actual processes because it is heavily affected by external environments such as atmospheric temperature and humidity. With insufficient operational experience and facility operations that rely on the intuition of the operator, the actual operation of AAV is very inefficient. To address these challenges, this paper proposes an artificial intelligence-based model that can intelligent AAV operations based on operational big data. The proposed artificial intelligence model is used deep neural networks, and the superiority of the artificial intelligence model is verified through multiple regression analysis and comparison. In this paper, the proposed model simulates based on data collected from real-world processes and compared to existing data, showing a 48.8% decrease in power usage compared to previous data. The techniques proposed in this paper can be used to improve the energy efficiency of the current natural gas generation process, and can be applied to other processes in the future.

Data Analysis of Dropouts of University Students Using Topic Modeling (토픽모델링을 활용한 대학생의 중도탈락 데이터 분석)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to provide implications for establishing support policies for students by empirically analyzing data on university students dropouts. To this end, data of students enrolled in D University after 2017 were sampled and collected. The collected data was analyzed using topic modeling(LDA: Latent Dirichlet Allocation) technique, which is a probabilistic model based on text mining. As a result of the study, it was found that topics that were characteristic of dropout students were found, and the classification performance between groups through topics was also excellent. Based on these results, a specific educational support system was proposed to prevent dropout of university students. This study is meaningful in that it shows the use of text mining techniques in the education field and suggests an education policy based on data analysis.

Detection of Red Pepper Powders Origin based on Machine Learning (머신러닝 기반 고춧가루 원산지 판별기법)

  • Ryu, Sungmin;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.355-360
    • /
    • 2022
  • As the increase cost of domestic red pepper and the increase of imported red pepper, damage cases such as false labeling of the origin of red pepper powder are issued. Accordingly we need to determine quickly and accurately for the origin of red pepper powder. The used method for presently determining the origin has the limitation in that it requires a lot of cost and time by experimentally comparing and analyzing the components of red pepper powder. To resolve the issues, this study proposes machine learning algorithm to classifiy domestic and imported red pepper powder. We have built machine learning model with 53 components contained in red pepper powder and validated. Through the proposed model, it was possible to identify which ingredients are importantly used in determining the origin. In the near future, it is expected that the cost of determining the origin can be further reduced by expanding to various foods as well as red pepper powder.

A Study on Android Malware Detection using Selected Features (선별된 특성 정보를 이용한 안드로이드 악성 앱 탐지 연구)

  • Myeong, Sangjoon;Kim, Kangseok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2022
  • Mobile malicious apps are increasing rapidly, and Android, which accounts for most of the global mobile OS market, is becoming a major target of mobile cyber security threats. Therefore, in order to cope with rapidly evolving malicious apps, there is a need for detection techniques of malicious apps using machine learning, one of artificial intelligence implementation technologies. In this paper, we propose a selected feature method using feature selection and feature extraction that can improve the detection performance of malicious apps. In the feature selection process, the detection performance improved according to the number of features, and the API showed relatively better detection performance than the permission. Also combining the two characteristics showed high precision of over 93% on average, confirming that the appropriate combination of characteristics could improve the detection performance.

Towards a Machine Learning Approach for Monitoring Urban Morphology - Focused on a Boston Case Study - (도시 형태 변화 모니터링을 위한 머신러닝 기법의 가능성 - 보스톤 사례연구를 중심으로 -)

  • Hwang, Jie-Eun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.125-140
    • /
    • 2017
  • This study explores potential capability of a machine learning approach for monitoring urban morphology based on an evident case study. The case study conveys year 2006 investigations on interpreting urban morphology of Boston Main Streets by applying a machine learning approach. From the lesson of the precedent study, in 2016, another field research and interview was conducted to compare changes in urban situation, data commons culture, and technology innovation during the decade. This paper describes open possibilities to advance urban monitoring for morphological changes. Most of all, a multi-participatory data platform enables managing urban data system in real time. Second, collaboration with machines with artificial intelligence can intervene the framework of the urban management system as well as transform it through new demands of innovative industries. Recently, urban regeneration became a dominant urban planning strategy in Korean, therefore, urban monitoring is on demand. It is timely important to correspond to in-situ problems based on empirical research.

Comparative Analysis of Information Security Textbooks for Chinese Elementary and Secondary Students (중국의 초·중등학생 대상 정보보호 교재 비교 고찰)

  • Eunsun Choi;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.183-192
    • /
    • 2023
  • Digital transformation is taking place rapidly around the world. As the development of digital technology becomes very fast, more information is expected to be digitized. Therefore, the possibility of cyber threats is increasing in transmitting and storing sensitive information such as personal and financial information online. In this paper, we compared and analyzed information security textbooks for elementary and secondary school students in China, where the recent development of artificial intelligence and digital transformation are rapidly occurring. After we collected related textbooks, textbooks suitable for analysis were selected. Then, we analyzed the external and internal systems of the textbooks separately. As a result of the external system analysis, all the textbook covers were properly produced, but the quality difference was significant among textbooks. In the case of textbooks for elementary school students, the excellence of layout and content placement was noticed. On the other hand, due to the internal system analysis, various contents were not included evenly when looking at the learning contents based on the "information society responsibility" learning goals presented in China. Through this paper, we hope to provide implications for information security-related education and textbook development research.

Analyzing Teachers' Educational Needs to Strengthen AI Convergence Education Capabilities (AI 융합교육 역량 강화를 위한 교사의 교육요구도 분석)

  • JaMee Kim;Yong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.121-130
    • /
    • 2023
  • In the school field, AI convergence education is recommended, which utilizes AI in education to change the paradigm of society. This study was conducted to define the terms of AI and AI convergence education to minimize the confusion of terms and to analyze the educational needs of teachers from the perspective of conducting AI convergence education. To achieve the purpose, 19 experts' opinions were collected, and a self-administered questionnaire was administered to 125 secondary school teachers enrolled in the AI convergence major at the Graduate School of Education. As a result of the analysis, the experts defined AI convergence education as a methodology for problem solving, not AI-based or utilization education. In the analysis of teachers' educational needs, "AI and big data" was ranked first, followed by "AI convergence education methodology" and "learning practice using AI". The significance of this study is that it defined the terminology by collecting the opinions of experts amidst the confusion of various terms related to AI, and presented the educational direction of AI convergence education for in-service teachers.