• Title/Summary/Keyword: 인공지능 대화시스템

Search Result 87, Processing Time 0.032 seconds

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.

Determinants of Safety and Satisfaction with In-Vehicle Voice Interaction : With a Focus of Agent Persona and UX Components (자동차 음성인식 인터랙션의 안전감과 만족도 인식 영향 요인 : 에이전트 퍼소나와 사용자 경험 속성을 중심으로)

  • Kim, Ji-hyun;Lee, Ka-hyun;Choi, Jun-ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.573-585
    • /
    • 2018
  • Services for navigation and entertainment through AI-based voice user interface devices are becoming popular in the connected car system. Given the classification of VUI agent developers as IT companies and automakers, this study explores attributes of agent persona and user experience that impact the driver's perceived safety and satisfaction. Participants of a car simulator experiment performed entertainment and navigation tasks, and evaluated the perceived safety and satisfaction. Results of regression analysis showed that credibility of the agent developer, warmth and attractiveness of agent persona, and efficiency and care of the UX dimension showed significant impact on the perceived safety. The determinants of perceived satisfaction were unity of auto-agent makers and gender as predisposing factors, distance in the agent persona, and convenience, efficiency, ease of use, and care in the UX dimension. The contributions of this study lie in the discovery of the factors required for developing conversational VUI into the autonomous driving environment.

Inducing Harmful Speech in Large Language Models through Korean Malicious Prompt Injection Attacks (한국어 악성 프롬프트 주입 공격을 통한 거대 언어 모델의 유해 표현 유도)

  • Ji-Min Suh;Jin-Woo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.451-461
    • /
    • 2024
  • Recently, various AI chatbots based on large language models have been released. Chatbots have the advantage of providing users with quick and easy information through interactive prompts, making them useful in various fields such as question answering, writing, and programming. However, a vulnerability in chatbots called "prompt injection attacks" has been proposed. This attack involves injecting instructions into the chatbot to violate predefined guidelines. Such attacks can be critical as they may lead to the leakage of confidential information within large language models or trigger other malicious activities. However, the vulnerability of Korean prompts has not been adequately validated. Therefore, in this paper, we aim to generate malicious Korean prompts and perform attacks on the popular chatbot to analyze their feasibility. To achieve this, we propose a system that automatically generates malicious Korean prompts by analyzing existing prompt injection attacks. Specifically, we focus on generating malicious prompts that induce harmful expressions from large language models and validate their effectiveness in practice.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.

A Multi-speaker Speech Synthesis System Using X-vector (x-vector를 이용한 다화자 음성합성 시스템)

  • Jo, Min Su;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.675-681
    • /
    • 2021
  • With the recent growth of the AI speaker market, the demand for speech synthesis technology that enables natural conversation with users is increasing. Therefore, there is a need for a multi-speaker speech synthesis system that can generate voices of various tones. In order to synthesize natural speech, it is required to train with a large-capacity. high-quality speech DB. However, it is very difficult in terms of recording time and cost to collect a high-quality, large-capacity speech database uttered by many speakers. Therefore, it is necessary to train the speech synthesis system using the speech DB of a very large number of speakers with a small amount of training data for each speaker, and a technique for naturally expressing the tone and rhyme of multiple speakers is required. In this paper, we propose a technology for constructing a speaker encoder by applying the deep learning-based x-vector technique used in speaker recognition technology, and synthesizing a new speaker's tone with a small amount of data through the speaker encoder. In the multi-speaker speech synthesis system, the module for synthesizing mel-spectrogram from input text is composed of Tacotron2, and the vocoder generating synthesized speech consists of WaveNet with mixture of logistic distributions applied. The x-vector extracted from the trained speaker embedding neural networks is added to Tacotron2 as an input to express the desired speaker's tone.

A Dynamic Inferential Framework for Learning Geometry Problem Solving (기하 문제 학습을 위한 동적 추론 체계)

  • Kook, Hyung-Joon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.412-421
    • /
    • 2000
  • In spite that the main contents of mathematical and scientific learning are understanding principles and their applications, most of existing educational softwares are based on rote learning, thus resulting in limited educational effects. In the artificial intelligence research, some progress has been made in developing automatic tutors based on proving and simulation, by adapting the techniques of knowledge representation, search and inference to the design of tutors. However, these tutors still fall short of being practical and the turor, even a prototype model, for learning problem solving is yet to come out. The geometry problem-solving tutor proposed by this research involves dynamic inference performed in parallel with learning. As an ontology for composing the problem space within a real-time setting, we have employed the notions of propositions, hypotheses and operators. Then we investigated the mechanism of interactive learning of problem solving in which the main target of inference involves the generation and the test of these components. Major accomplishment from this research is a practical model of a problem tutor embedded with a series of inference techniques for algebraic manipulation, which is indispensable in geometry problem solving but overlooked by previous research. The proposed model is expected to be applicable to the design of problem tutors in other scientific areas such as physics and electric circuitry.

  • PDF

Development and mathematical performance analysis of custom GPTs-Based chatbots (GPTs 기반 문제해결 맞춤형 챗봇 제작 및 수학적 성능 분석)

  • Kwon, Misun
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.303-320
    • /
    • 2024
  • This study presents the development and performance evaluation of a custom GPT-based chatbot tailored to provide solutions following Polya's problem-solving stages. A beta version of the chatbot was initially deployed to assess its mathematical capabilities, followed by iterative error identification and correction, leading to the final version. The completed chatbot demonstrated an accuracy rate of approximately 89.0%, correctly solving an average of 57.8 out of 65 image-based problems from a 6th-grade elementary mathematics textbook, reflecting a 4 percentage point improvement over the beta version. For a subset of 50 problems, where images were not critical for problem resolution, the chatbot achieved an accuracy rate of approximately 91.0%, solving an average of 45.5 problems correctly. Predominant errors included problem recognition issues, particularly with complex or poorly recognizable images, along with concept confusion and comprehension errors. The custom chatbot exhibited superior mathematical performance compared to the general-purpose ChatGPT. Additionally, its solution process can be adapted to various grade levels, facilitating personalized student instruction. The ease of chatbot creation and customization underscores its potential for diverse applications in mathematics education, such as individualized teacher support and personalized student guidance.