• 제목/요약/키워드: 인공지능 교통사고 예방 시스템

검색결과 9건 처리시간 0.024초

인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구 (The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence)

  • 박문수;박대우
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1248-1254
    • /
    • 2022
  • 스쿨존에서 교통사고를 사전에 예방하려고 노력하고 있다. 하지만, 스쿨존 내 교통사고는 계속 발생하고 있다. 운전자가 어린이보호구역 내 상황 정보를 미리 알 수 있으면, 사고를 줄일 수 있다. 본 논문에서는 스쿨존 내 사각지대를 없애는 카메라, 사전 교통정보를 수집할 수 있는 번호인식 카메라 시스템을 설계한다. 차량속도 및 보행자를 인식하는 LIDAR 시스템을 개선하여 설계한다. 카메라 및 LIDAR에서 인식된 보행자 및 차량 영상 정보를 수집하고 가공하여, 인공지능 시계열 분석 및 인공지능 알고리즘을 적용한다. 본 논문에서 제안한 딥러닝으로 학습된 인공지능 교통사고 예방 시스템은, 스쿨존 진입 전 차량 내 모바일 장치에 스쿨존의 정보를 운전자에게 전달하는 강제 푸시서비스를 한다. 그리고 LED 안내판에 스쿨존 교통정보를 알람으로 제공한다.

교통사고 예방을 위한 장애물 탐지 인공지능 드론 개발 (Development of artificial intelligence drone for obstacle detection to prevent traffic accidents)

  • 오건;김경빈 ;이유종 ;오규석 ;정찬호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.928-929
    • /
    • 2023
  • 도로 교통 사고 및 교통 정체는 도로 상황의 비정상적인 요인으로 인해 발생하는 심각한 문제이다. 이러한 문제를 해결하기 위해 도로 상황을 실시간으로 감지하고 사용자에게 알리는 시스템이 필요하다고 판단된다. 본 연구는 도로 상황 감지 및 예방을 위한 새로운 접근 방식을 제안하며, 이에 대한 배경과 필요성, 그리고 프로젝트의 특장점을 소개한다.

인공지능을 활용한 어린이 보호구역 사고방지 시스템 개발 (Development of Traffic Accident Prevention System in School-zone Based on Artificial Intelligence)

  • 박준형;문병수;김범준;박건형;김예림;김형훈;심현민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.870-872
    • /
    • 2020
  • 본 시스템은 어린이보호구역에 발생하는 차량사고가 불법주정차된 차량으로 인한 사각지대에 의해 발생되는 것에 착안하여 보행자를 인식하여 운전자들에게 알려 안전운전을 유도하여 사고를 예방해 주는 시스템이다 본 시스템은 영상인식장치, 경광장치, 중계장치, 차량 내 경고장치, 원격 트래픽 경고 수신기로 구성되어 있으며 영상인식장치가 edge-TPU 장치를 활용하여 카메라로부터 입력받은 영상을 모바일넷 기반의 딥러닝으로 처리하여 보행자, 차량, 그밖의 물체를 인식한다. 보행자가 인식되면 외부에서 경광장치가 발광하여 신호를 보내고, 중계장치를 통해 차량 내 경고장치로 보행자 경고 신호를 보낸다. 실험 결과 영상인식을 통해 보행자와 차량을 분류 인식할 수 있음을 확인하였다. 이러한 시스템은 어린이 보호구역에서 발생할 수 있는 교통사고를 방지하기 위해 효과적임을 확인할 수 있었다.

Skeleton Keypoints를 활용한 CNN3D 기반의 버스 승객 승하차 예측모델 (CNN3D-Based Bus Passenger Prediction Model Using Skeleton Keypoints)

  • 장진;김수형
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.90-101
    • /
    • 2022
  • 버스는 대중적으로 많이 이용되는 교통수단이다. 그만큼 승객의 안전관리를 위해 철저한 대비가 필요하다. 하지만 2018년 승차하기 위해 접근하는 노인을 인지하지 못하고 버스가 출발하면서 사망사고가 발생하는 등 안전 시스템이 미흡한 상황이다. 기존에 뒷문 계단 쪽 센서를 통해 끼임 사고를 방지하는 안전 시스템은 있지만, 이러한 시스템은 위 사고처럼 승하차하려는 과정에서 발생하는 사고를 예방하진 못한다. 버스 승객의 승하차 의도를 예측할 수 있다면, 위와 같은 사고를 예방하는 안전 시스템 개발에 도움이 될 것이다. 그러나 승객의 승하차 의도를 예측하는 연구는 부족한 상태이다. 따라서 본 논문에서는 버스에 부착된 카메라 영상에서 UDP-Pose를 통해 승객의 skeleton keypoints를 추출하고, 이를 활용한 1×1 CNN3D 기반의 버스 승객 승하차 의도를 예측하는 모델을 제안한다. 제안한 모델은 승객의 승하차 의도를 예측하는 부분에서 RNN, LSTM 모델보다 약 1~2% 높은 정확도를 보여준다.

딥러닝 객체인식을 이용한 자율주행 RC카 개발 (Development of Autonomous driving RC car using deep learning object recognition)

  • 김건희;김현정;김준영;이준엽;이윤수;윤태진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.317-318
    • /
    • 2022
  • 최근 인공지능 기술이 발전함에 따라 자율주행, 첨단 운전자 지원 시스템과 같은 기술들이 개발되고 있다. 이런 기술들은 교통사고를 예방하여 사망률 등을 감소시키고, 운전자의 편의성을 향상시킨다. 본 논문에서는 자율주행과 첨단 운전자 지원 시스템에서 사용할 수 있는 기술들을 개발하고, 이를 RC카에 적용하여 구현하였고, 인공트랙에서 실험하여 평가하였다. 딥러닝 기반 실시간 객체 인식 및 Opencv 를 이용한 차선 인식기술을 통해 차선을 인식하여 이탈하지 않고 주행하며 표지판 등 객체를 인식하여 상황에 따른 대응으로 모터를 제어하는 기술을 개발하고 인공트랙을 자율주행하는 RC카를 구현하고 실험하였다.

  • PDF

이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구 (A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road)

  • 장영규;김경석;김혜원;조원호
    • 한국ITS학회 논문지
    • /
    • 제23권2호
    • /
    • pp.79-88
    • /
    • 2024
  • 교통사고에 가장 취약한 도로는 이면도로 비신호교차로이며, 이들 취약지점에 AI 및 엣지 컴퓨팅 융합 기술을 적용하여 교통사고를 예방하고자 하는 시도가 이루어졌다. 본 연구에서는 현장 데이터를 활용하여 AI 및 엣지컴퓨팅 기술이 어떻게 교통사고 감소에 영향을 미칠 수 있고 한계가 무엇인지 교통공학적 측면에서 분석하였다. AI 객체인식으로 20m 후방에서 객체정보를 취득함으로써 운전자는 약 3.6초의 대응시간을 확보하게 되고, 엣지기술에 의해 0.5~0.8초만에 정보가 표출되어 운전자는 교차로 상황에 대응할 수 있는 시간을 얻게 된다. 또한, 교차로 접근로 10m지점에서는 11~12km, 20m지점에서는 20km/h 수준으로 속도관리가 이루어질 때 교차로 진입 전 정지가 가능한 것으로 분석되었다. 따라서 이들 시스템 도입 후 실증 교차로의 데이터를 Taylor 모형에 적용하면 교통사고 확률이 약 40% 감소하는 것으로 분석되었다. 결과적으로 높은 AI 기술의 높은 객체인식률, 엣지기술의 실시간 정보제공 그리고 교차로 접근로의 적정 속도관리가 함께 이루어질 때 교통사고 감소가 가능한 것으로 나타났다.

시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구 (A study on accident prevention AI system based on estimation of bus passengers' intentions)

  • 박성환;변선오;박정훈
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.57-66
    • /
    • 2023
  • 본 논문에서는 시내버스 내 CCTV 시스템을 활용, 비전AI 기반의 승하차 승객 의도를 예측하여 사고방지가 가능한 시스템에 대해 연구한 내용을 기술한다. 본 시스템은 YOLOv7 Pose 모델과 Object Tracking 기술을 활용하여 버스 내부의 승객을 감지하고 추적하며, LSTM 모델을 활용하여 승객의 승하차 여부를 예측한다. 시스템은 버스 내 CCTV 단말기 상에 설치 가능하여 운전 중 어느 때에나 승하차 여부 예측 결과를 시각적으로 확인할 수 있으며, 운전자에게 자동 알람을 주어 승하차 시 일어날 수 있는 사고를 예방할 수 있다. 테스트 결과, 승객의 승차 의도를 분석하는 채널 A와 하차 의도를 예측하는 채널 C에서 각각 0.81과 0.79의 정확도를 달성하였으며, 실시간성을 보장하기 위해 GPU 환경에서 초당 최소 5 프레임 이상의 분석이 가능하다는 것을 확인하였다. 본 알고리즘을 통해 시내버스 운행 중의 승객 승하차 과정을 모니터링하고, 그 안전과 편의성에 도움을 줄 것으로 생각된다. 추후 하드웨어가 발전하고, DB를 통해 데이터가 많이 수집된다면, 이 또한 다양한 안전 관련 지표로의 확장이 가능할 것이다. 더불어 본 알고리즘은 추후 자율주행 버스 상용화 시, 인간을 대신하여 승객 안전에 더욱 핵심적인 역할을 수행할 것이라 생각되며, 기타 지하철 및 승객이 내리고 탈 수 있는 모든 대중교통 환경에의 확장 또한 가능하여 대중교통의 안전화에 도움을 줄 것으로 생각한다.

장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측 (Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks)

  • 장다운;김주성
    • 해양환경안전학회지
    • /
    • 제28권5호
    • /
    • pp.780-790
    • /
    • 2022
  • 해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.

합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구 (Anomaly Detections Model of Aviation System by CNN)

  • 임현재;김태림;송종규;김범수
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.