• Title/Summary/Keyword: 인공지능 개발자

Search Result 265, Processing Time 0.026 seconds

자율운항선박 상용화에 따른 해양경찰관련 법령 개선 방안 - 해양경찰청 소관 법령 중심으로 -

  • 장우태;박현탁
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.169-170
    • /
    • 2023
  • 사물인터넷(loT), 인공지능, 빅데이터 등 빠르게 발전하는 기술을 기반으로 개발 중인 자율운항선박(MASS)의 개발이 유럽(독일, 노르웨이, 스웨덴, 독일, 노르웨이 등), 미국, 일본, 중국 등 다양한 나라에서 이루어지고 있다. 산업통산자원부는 2022년 11월 3일 자율운항에 필요한 항해·기관 자동화 시스템 등의 핵실기술 개발과 자율운항 해상 시험선 실증을 수행하는 자율운항선박 성능실증센터를 준공하여 미래 해운산업에 박차를 가하고 있다. 해양주권 수호, 수색·구조, 해상질서유지, 해양범죄예방·수사, 해양오염방제 등 바다에서의 수호자 역할을 수행하는 해양경찰의 변화는 무엇보다 중요하겠다. 이에 국내·외 서적, 연구논문, 보고서, 언론자료 등의 분석을 통해 자율운항선박 등 미래발전에 대한 관심을 가지고, 해양경찰의 개선방안을 논의해 보고자 한다.

  • PDF

The Management of Smart Safety Houses Using The Deep Learning (딥러닝을 이용한 스마트 안전 축사 관리 방안)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.505-507
    • /
    • 2021
  • Image recognition technology is a technology that recognizes an image object by using the generated feature descriptor and generates object feature points and feature descriptors that can compensate for the shape of the object to be recognized based on artificial intelligence technology, environmental changes around the object, and the deterioration of recognition ability by object rotation. The purpose of the present invention is to implement a power management framework required to increase profits and minimize damage to livestock farmers by preventing accidents that may occur due to the improvement of efficiency of the use of livestock house power and overloading of electricity by integrating and managing a power fire management device installed for analyzing a complex environment of power consumption and fire occurrence in a smart safety livestock house, and to develop and disseminate a safe and optimized intelligent smart safety livestock house.

  • PDF

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

Policy and Strategy for Intelligence Information Education and Technology (지능정보 교육과 기술 지원 정책 및 전략)

  • Lee, Tae-Gyu;Jung, Dae-Chul;Kim, Yong-Kab
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.359-368
    • /
    • 2017
  • What is the term "intelligence information society", which is a term that has been continuously discussed recently? This means that the automation beyond the limits of human ability in the whole societies based on intelligent information technology is a universalized social future. In particular, it is a concept that minimizes human intervention and continuously pursues evolution to data (or big data) -based automation. For example, autonomous automation is constantly aiming at unmanned vehicles with artificial intelligence as a key element. However, until now, intelligent information research has focused on the intelligence itself and has made an effort to improve intelligence logic and replace human brain and intelligence. On the other hand, in order to replace the human labor force, we have continued to make efforts to replace workers with robots by analyzing the working principles of workers and developing optimized simple logic. This study proposes important strategies and directions to implement intelligent information education policy and intelligent information technology research strategy by suggesting access strategy, education method and detailed policy road map for intelligent information technology research strategy and educational service. In particular, we propose a phased approach to intelligent information education such as basic intelligence education, intelligent content education, and intelligent application education. In addition, we propose education policy plan for the improvement of intelligent information technology, intelligent education contents, and intelligent education system as an important factor for success and failure of the 4th industrial revolution, which is centered on intelligence and automation.

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Design and Implementation of Intelligent Agent based Margin Push Multi-agent System for Internet Auction (인터넷 경매를 위한 지능형 에이전트 기반 마진 푸쉬 멀티에이전트 시스템 설계 및 구현)

  • Lee, Geun-Wang;Kim, Jeong-Jae;Lee, Jong-Hui;O, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.167-172
    • /
    • 2002
  • Recently, some of people are keep in research and development of the further more efficient and convenient auction systems using intelligent software agents in electronic commerce. The purpose of this thesis is that a simple auction system has web bulletin boards, is aided by intelligent agent, and generates pertinent auction duration time and starting price for auction goods of auctioneer into a auction system, then the auctioneer gets the highest margin. The seller who want to sell goods, is using internet sends mail that has information for goods to agent of internet auction system. The agent undertake filtering process for already learned information about similar goods. And it calculate duration time and start price from stored bidding history database. In this thesis we propose a mailing agent system pushing information in internet auction that enables to aid decision for auctioneer about the starting time and price which delivers the highest margin.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Development of Traffic Accident Prevention System in School-zone Based on Artificial Intelligence (인공지능을 활용한 어린이 보호구역 사고방지 시스템 개발)

  • Park, JunHyeong;Moon, Byeongsoo;Kim, Bumjun;Park, Kunhyung;Kim, Yerim;Kim, Hyunghoon;Shim, Hyeon-min
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.870-872
    • /
    • 2020
  • 본 시스템은 어린이보호구역에 발생하는 차량사고가 불법주정차된 차량으로 인한 사각지대에 의해 발생되는 것에 착안하여 보행자를 인식하여 운전자들에게 알려 안전운전을 유도하여 사고를 예방해 주는 시스템이다 본 시스템은 영상인식장치, 경광장치, 중계장치, 차량 내 경고장치, 원격 트래픽 경고 수신기로 구성되어 있으며 영상인식장치가 edge-TPU 장치를 활용하여 카메라로부터 입력받은 영상을 모바일넷 기반의 딥러닝으로 처리하여 보행자, 차량, 그밖의 물체를 인식한다. 보행자가 인식되면 외부에서 경광장치가 발광하여 신호를 보내고, 중계장치를 통해 차량 내 경고장치로 보행자 경고 신호를 보낸다. 실험 결과 영상인식을 통해 보행자와 차량을 분류 인식할 수 있음을 확인하였다. 이러한 시스템은 어린이 보호구역에서 발생할 수 있는 교통사고를 방지하기 위해 효과적임을 확인할 수 있었다.

The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds (만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석)

  • Park, Jieun;Hong, Misun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-59
    • /
    • 2022
  • We analyze the perceptions and requirements of early childhood teachers for artificial intelligence(AI) education to develop an AI education program for 5-year-olds. As for the research methodology, we conducted a survey and an in-depth interview to extract the AI educational elements centering on the analysis stage, the first stage of the ADDIE model. The research result is that first, it is necessary to design a curriculum that combines the contents of early childhood education and AI education to be naturally accepted as AI education for 5-year-olds. Second, an evaluation tool for AI education that can showcase the teacher's reflection should be developed systematically. Third, it is necessary to support a play-centered AI education support and environment for early childhood teachers. Lastly, it is essential to establish a system that can be continuously operated in the field of early childhood education in consideration of AI education in the non-curricular curriculum. It is expected that in the future, a play-oriented AI education program for 5-year-olds will be developed to spread awareness of AI education for infants and present an AI education approach for each age and stage of learners.