• Title/Summary/Keyword: 인공지능서비스

Search Result 784, Processing Time 0.03 seconds

Fine-tuning Method to Improve Sentiment Classification Perfoimance of Review Data (리뷰 데이터 감성 분류 성능 향상을 위한 Fine-tuning 방법)

  • Jung II Park;Myimg Jin Lim;Pan Koo Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.44-53
    • /
    • 2024
  • Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.

Boot storm Reduction through Artificial Intelligence Driven System in Virtual Desktop Infrastructure

  • Heejin Lee;Taeyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organization's work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.

Trends in Deep Learning-based Medical Optical Character Recognition (딥러닝 기반의 의료 OCR 기술 동향)

  • Sungyeon Yoon;Arin Choi;Chaewon Kim;Sumin Oh;Seoyoung Sohn;Jiyeon Kim;Hyunhee Lee;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.453-458
    • /
    • 2024
  • Optical Character Recognition is the technology that recognizes text in images and converts them into digital format. Deep learning-based OCR is being used in many industries with large quantities of recorded data due to its high recognition performance. To improve medical services, deep learning-based OCR was actively introduced by the medical industry. In this paper, we discussed trends in OCR engines and medical OCR and provided a roadmap for development of medical OCR. By using natural language processing on detected text data, current medical OCR has improved its recognition performance. However, there are limits to the recognition performance, especially for non-standard handwriting and modified text. To develop advanced medical OCR, databaseization of medical data, image pre-processing, and natural language processing are necessary.

The Impact of Generative AI's Technical Characteristics and Librarians' Personal Traits on Intention to Use Generative AI (생성형 AI의 기술적 특성과 사서의 개인적 특성이 생성형 AI 사용의도에 미치는 영향)

  • Seonghee Kim;Seung Min Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.35 no.2
    • /
    • pp.109-133
    • /
    • 2024
  • This study investigated the impact of the technical characteristics of Generative AI (GAI) and librarians' personal traits on their intention to use GAI. Personalization, interaction, and context awareness were considered as technical characteristics of GAI that influence the intention to use GAI, while innovativeness and frequency of GAI use were considered as librarians' personal traits. The study targeted 187 librarians working in libraries, and 165 questionnaires were collected and analyzed. The results showed that the technical characteristics of GAI had a statistically significant impact on the intention to use GAI. Additionally, librarians' personal traits, namely innovativeness and frequency of GAI use, were also found to have a significant impact on the intention to use GAI. The findings of this study can be used as valuable information to help librarians increase their intention to use GAI and improve the quality and satisfaction of library services.

Research on Utilization of AI in the Media Industry: Focusing on Social Consensus of Pros and Cons in the Journalism Sector (미디어 산업 AI 활용성에 관한 고찰 : 저널리즘 분야 적용의 주요 쟁점을 중심으로)

  • Jeonghyeon Han;Hajin Yoo;Minjun Kang;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.713-722
    • /
    • 2024
  • This study highlights the impact of Artificial Intelligence (AI) technology on journalism, discussing its utility and addressing major ethical concerns. Broadcasting companies and media institutions, such as the Bloomberg, Guardian, WSJ, WP, NYT, globally are utilizing AI for innovation in news production, data analysis, and content generation. Accordingly, the ecosystem of AI journalism will be analyzed in terms of scale, economic feasibility, diversity, and value enhancement of major media AI service types. Through the previous literature review, this study identifies key ethical and social issues in AI journalism as well. It aims to bridge societal and technological concerns by exploring mutual development directions for AI technology and the media industry. Additionally, it advocates for the necessity of integrated guidelines and advanced AI literacy through social consensus in addressing these issues.

Examples of AI Technology Applications in the Field of Cultural Heritage Record Management -Focusing on "Finding Cultural Heritage - ZOOM"- (문화유산 기록관리 분야 AI기술 적용 사례 -'문화유산 찾아-ZOOM'을 중심으로-)

  • Ju hyun Baek
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.3
    • /
    • pp.145-156
    • /
    • 2024
  • This study explores the integration of cutting-edge technology with records management, aiming to create new value not only in work processes but also in record information services. The research focuses on the case of constructing an "AI-based cultural heritage research record learning data and search system," carried out by the National Research Institute of Cultural Heritage (NRICH) Archives, and analyzes user satisfaction results. "Discovering Cultural Heritage with ZOOM" is a system designed to proactively predict research data demand by constructing big data (learning data) from images (675,338 items) contained in 1,421 volumes of publications in the cultural heritage field, spanning from 1973 to the present, and simultaneously presenting 50 similar images. This initiative aims to foster change and development in the field of records management and cultural heritage in response to the Fourth Industrial Revolution's advanced technologies. It is expected to provide valuable information to researchers, practitioners, and the general public alike.

A Study on the Implications of Korea Through the Policy Analysis of AI Start-up Companies in Major Countries (주요국 AI 창업기업 정책 분석을 통한 국내 시사점 연구)

  • Kim, Dong Jin;Lee, Seong Yeob
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.215-235
    • /
    • 2024
  • As artificial intelligence (AI) technology is recognized as a key technology that will determine future national competitiveness, competition for AI technology and industry promotion policies in major countries is intensifying. This study aims to present implications for domestic policy making by analyzing the policies of major countries on the start-up of AI companies, which are the basis of the AI industry ecosystem. The top four countries and the EU for the number of new investment attraction companies in the 2023 AI Index announced by the HAI Research Institute at Stanford University in the United States were selected, The United States enacted the National AI Initiative Act (NAIIA) in 2021. Through this law, The US Government is promoting continued leadership in the United States in AI R&D, developing reliable AI systems in the public and private sectors, building an AI system ecosystem across society, and strengthening DB management and access to AI policies conducted by all federal agencies. In the 14th Five-Year (2021-2025) Plan and 2035 Long-term Goals held in 2021, China has specified AI as the first of the seven strategic high-tech technologies, and is developing policies aimed at becoming the No. 1 AI global powerhouse by 2030. The UK is investing in innovative R&D companies through the 'Future Fund Breakthrough' in 2021, and is expanding related investments by preparing national strategies to leap forward as AI leaders, such as the implementation plan of the national AI strategy in 2022. Israel is supporting technology investment in start-up companies centered on the Innovation Agency, and the Innovation Agency is leading mid- to long-term investments of 2 to 15 years and regulatory reforms for new technologies. The EU is strengthening its digital innovation hub network and creating the InvestEU (European Strategic Investment Fund) and AI investment fund to support the use of AI by SMEs. This study aims to contribute to analyzing the policies of major foreign countries in making AI company start-up policies and providing a basis for Korea's strategy search. The limitations of the study are the limitations of the countries to be analyzed and the failure to attempt comparative analysis of the policy environments of the countries under the same conditions.

  • PDF

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

A Case Study on the Application of AI-OCR for Data Transformation of Paper Records (종이기록 데이터화를 위한 AI-OCR 적용 사례연구)

  • Ahn, Sejin;Hwang, Hyunho;Yim, Jin Hee
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.165-193
    • /
    • 2022
  • It can be said that digital technology is at the center of the change in the modern work environment. In particular, in general public institutions that prove their work with records produced by business management systems and document production systems, the record management system is also the work environment itself. Gimpo City applied for the 2021 public cloud leading project of the National Information Society Agency (NIA) to proactively respond to the 4th industrial revolution technology era and implemented a public cloud-based AI-OCR technology enhancement project with 330 million won in support of 330 million won. Through this, it was converted into data beyond the limitations of non-electronic records limited to search and image viewing that depend on standardized index values. In addition, a 98% recognition rate was realized by applying a new technology called AI-OCR. Since digital technology has been used to improve work efficiency, productivity, development cost, and record management service levels of internal and external users, we would like to share the direction of enhancing expertise in the record management and implementation of work environment innovation.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.