• Title/Summary/Keyword: 인공지능마케팅

Search Result 57, Processing Time 0.02 seconds

Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques (XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해)

  • Lee, Jaejun;Jeong, Ii Tae;Lim, Do Hyun;Kwahk, Kee-Young;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF

Customer Churning Analysis by Using Data Mining in Credit Card Market (신용카드 시장에서 데이터마이닝을 이용한 이탈고객 분석)

  • 이건창;정남호;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.421-444
    • /
    • 2001
  • 최근 데이터 마이닝 기법이 주목받고 있는 이유 중의 가장 큰 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리할 수 있도록 지원하기 때문이다. 특히 고객 보유율 5% 신장이 수익률 120% 증대를 가져오는 것으로 보고되고 있는 신용카드 업계에서는 신규고객을 확보하는 것 만큼 기존 고객을 유지·관리하는 것이 중요하다. 특히, 신용카드를 발급 받고 거의 사용하지 않은 고객이나 쉽게 이탈하는 고객을 판별하는 것은 신용카드사의 입장에서는 비용절감 차원에서 매우 중요하다. 그러나 아직까지 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 연구는 거의 진행되지 않았다. 이에 본 인구에서는 데이터마이닝 기법 중 널리 알려진 인공신경망, 로지스틱 회귀분석, C5.0 방법을 이용하여 신용카드 시장에서의 고객현황에 대하여 분석하고자 한다. 이를 위하여 본 연구에서는 모 신용카드사의 최근 4년간 (97넌 3월 이후) 가입고객 및 이탈고객을 대상으로 실증분석을 실시하였다. 분석결과 신용카드 시장에서 카드를 지속적으로 보유하고 있는 고객과 이탈하는 고객을 구분하는 속성이 존재함을 발견하였고, 이를 바탕으로 신용카드사가 수립해야 할 마케팅 전략을 제시하였다.

  • PDF

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

A Distributed Web-DSS Approach for Coordinating Interdepartmental Decisions - Emphasis on Production and Marketing Decision (부서간 의사결정 조정을 위한 분산 웹 의사결정지원시스템에 관한 연구)

  • 이건창;조형래;김진성
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.291-300
    • /
    • 1999
  • 인터넷을 기반으로 한 정보통신의 급속한 발전이라는 기업환경의 변화에 적응하기 위해서 기업은 점차 모든 경영시스템을 인터넷을 기반으로 하도록 변화시키고 있을 뿐만 아니라, 기업 조직 또한 전세계를 기반으로한 글로벌 기업 형태로 변화하고 있다. 이러한 급속한 경영환경의 변화로 인해서 기업 내에서는 종전과는 다른 형태의 부서간 상호의사결정조정 과정이 필요하게 되었다. 일반 기업들을 대상으로 한 상호의사결정의 지원과정에 대해서는 기존에 많은 연구들이 있었으나 글로벌기업과 같은 네트워크 형태의 새로운 형태의 기업에 있어서의 상호의사결정과정을 지원할 수 있는 의사결정지원시스템에 대해서는 단순한 그룹의사결정지원시스템 또는 분산의사결정지원시스템과 같은 연구들이 주를 이루고 있다. 따라서 본 연구에서는 인터넷 특히, 웹을 기반으로 한 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 메커니즘을 제시하고 이에 기반한 프로토타입 형태의 시스템을 구현하여 성능을 검증하고자 한다. 특히, 기업 내에서 가장 대표적으로 상호의사결정지원이 필요한 생산과 마케팅 부서를 대상으로 상호의사결정지원 메커니즘을 개발하고 실험을 진행하였다. 그 결과 글로벌 기업내의 생산과 마케팅 부서간 상호의사결정을 효율적으로 지원 할 수 있는 상호조정 메카니즘인 개선된 PROMISE(PROduction and Marketing Interface Support Environment)를 기반으로 한 웹 분산의사결정지원시스템 (Web-DSS : Web-Decision Support Systems)을 제안하는 바이다.자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer

  • PDF

Data Mining for Personalization Model Using Customer Belief under the Internet Banking Environment (인터넷 뱅킹에서 고객의 신념을 이용한 개인화 모형을 위한 데이터마이닝)

  • 홍태호;서보밀;한인구
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.215-219
    • /
    • 2002
  • 인터넷의 급속한 성장으로 e비즈니스의 인터넷 사용이 증대되었다. 인터넷 환경에서는 새로운 인터넷 사용자라는 소비자를 대상으로 인터넷 소비자 행동에 관한 연구가 중요한 분야로 자리잡게 되었다. 인터넷상에서의 소비자 행동을 설명하기 위해 온라인 인지절차 (Cognitive process)에 관한 연구로, 웹 사이트에 대한 소비자의 태도에 미치는 영향을 밝히는 연구들이 수행되었다. 웹 사이트에 대한 소비자의 태도에 따른 개인화된 마케팅을 위해서는 웹사이트를 소비자의 특성을 고려해서 개인화된 웹사이트를 운영해야 한다. 개인의 정보 시스템 사용에 대한 설명을 위하여 많은 모형들이 개발되어 왔다. 기술 수용 모형(Technology Acceptance Model: TAM)은 개인의 정보 시스템 수용에 영향을 미치는 요소를 설명하기 위하여 가장 폭 넓게 사용되고 있는 모형이다. TRA 모형에 따르면, 개인의 사회적 행위는 그 행위의 결과에 대한 신념에 의해 영향을 받는다고 할 수 있다. 본 연구에서는 고객의 신념을 신뢰 (Trust), 유용성 (Usefulness), 사용의 편의성 (Ease of Use), 위험 (Risk), 보안통제 (Security control)로 분류하고, 고객의 실제 사용 (Usage)을 인터넷 뱅킹 환경에서 측정하여 고객세분화에 적용하였다. 세분화된 고객집단을 분류하기 위해서 인공신경망, 판별 분석 기법을 적용하여 웹 사이트에서 사용할 수 있는 개인화 모형을 개발하였다.

  • PDF

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.

An Analysis of Arts Management-Related Studies' Trend in Korea using Topic Modeling and Semantic Network Analysis (토픽모델링과 의미연결망분석을 활용한 한국 예술경영 연구의 동향 변화 - 1988년부터 2017년까지 국내 학술논문 분석을 중심으로 -)

  • Hwang, SeoI;Park, Yang Woo
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.5-31
    • /
    • 2019
  • The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.

"Hey Alexa, Would You Create a Color Palette?" UX/UI Designers' Perspectives on Using Natural Language to Interact with Future Intelligent Design Assistants ("알렉사, 색상 팔레트를 만들어줄 수 있어?" 지능형 디자인 비서와 자연어로 협업을 수행할 UX/UI 디자이너의 생각)

  • Bertao, Renato Antonio;Joo, Jaewoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.193-206
    • /
    • 2021
  • Artificial Intelligence (AI) has been inserted into people's lives through Intelligent Virtual Assistants (IVA), like Alexa. Moreover, intelligent systems have expanded to design studios. This research delves into designers' perspectives on developing AI-based practices and examines the challenges of adopting future intelligent design assistants. We surveyed UX/UI professionals in Brazil to understand how they use IVAs and AI design tools. We also explored a scenario featuring the use of Alexa Sensei, a hypothetical voice-controlled AI-based design assistant mixing Alexa and Adobe Sensei characteristics. The findings indicate respondents have had limited opportunities to work with AI, but they expect intelligent systems to improve the efficiency of the design process. Further, majority of the respondents predicted that they would be able to collaborate creatively with AI design systems. Although designers anticipated challenges in natural language interaction, those who already adopted IVAs were less resistant to the idea of working with Alexa Sensei as an AI design assistant.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.29-37
    • /
    • 2023
  • Due to climate change, interest in crop production and distribution is increasing, and attempts are being made to use bigdata and AI to predict production volume and control shipments and distribution stages. Prediction of agricultural product imports not only affects prices, but also controls shipments of farms and distributions of distribution companies, so it is important information for establishing marketing strategies. In this paper, we create an artificial intelligence prediction model that predicts the future import volume based on the wholesale market melon import volume data disclosed by the agricultural statistics information system and evaluate its accuracy. We create prediction models using three models: the Neural Prophet technique, the Ensembled Neural Prophet model, and the GRU model. As a result of evaluating the performance of the model by comparing two major indicators, MAE and RMSE, the Ensembled Neural Prophet model predicted the most accurately, and the GRU model also showed similar performance to the ensemble model. The model developed in this study is published on the web and used in the field for 1 year and 6 months, and is used to predict melon production in the near future and to establish marketing and distribution strategies.

Forecasting the Growth of Smartphone Market in Mongolia Using Bass Diffusion Model (Bass Diffusion 모델을 활용한 스마트폰 시장의 성장 규모 예측: 몽골 사례)

  • Anar Bataa;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.193-212
    • /
    • 2022
  • The Bass Diffusion Model is one of the most successful models in marketing research, and management science in general. Since its publication in 1969, it has guided marketing research on diffusion. This paper illustrates the usage of the Bass diffusion model, using mobile cellular subscription diffusion as a context. We fit the bass diffusion model to three large developed markets, South Korea, Japan, and China, and the emerging markets of Vietnam, Thailand, Kazakhstan, and Mongolia. We estimate the parameters of the bass diffusion model using the nonlinear least square method. The diffusion of mobile cellular subscriptions does follow an S-curve in every case. After acquiring m, p, and q parameters we use k-Means Cluster Analysis for grouping countries into three groups. By clustering countries, we suggest that diffusion rates and patterns are similar, where countries with emerging markets can follow in the footsteps of countries with developed markets. The purpose was to predict the timing and the magnitude of the market maturity and to determine whether the data follow the typical diffusion curve of innovations from the Bass model.