• Title/Summary/Keyword: 인공지능마케팅

Search Result 57, Processing Time 0.021 seconds

Predicting personal activity categories for POI recommendation (방문지 추천을 위한 개인 행동 범주 예측)

  • Byeong-Il Hwang;Dong-Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.5-6
    • /
    • 2023
  • 본 연구에서는 언텍트 소비가 일반화됨에 따라 소상공인들을 지원하기 위해 캡티브-포털을 활용하여 주문하는 등의 시스템을 구축하고 있으며, 이에 상권 내 방문자들의 주문 정보를 기반으로 개인의 선호나 취향을 고려하고 기존 방문 순서를 고려하여 다음 방문지를 추천할 수 있는 모델을 개발하고자 한다. 모델 개발을 위한 데이터셋으로는 캡티브-포털을 통해 수집되는 변수 항목과 유사한 위치기반 SNS 데이터인 Foursquare 데이터를 활용했다. 본 논문에서는 데이터셋의 변수 중 상호명을 기반으로 22개의 행동 유형 카테고리로 묶어 현재 행동 유형 이후에 다음에 이어질 행동 유형을 예측하는 것을 제안한다. 개인 별 세션 기반의 데이터셋을 LightMove 알고리즘을 활용하여 행동유형 예측을 임베딩 차원의 변경하여 실험한 결과 500차원에서 Top-5가 82.72의 성능을 보임을 확인했다. 향후 국내 상권에 맞는 방문지 추천 시스템이 개발된다면 방문지 추천을 활용하여 다양한 마케팅 전략을 수립이 가능해질 수 있고, 이를 통해 지역 상권이 활성화될 것으로 기대된다.

  • PDF

Trends in the use of big data and artificial intelligence in the sports field (스포츠 현장에서의 빅데이터와 인공지능 활용 동향)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2022
  • This study analyzed the recent trends in the sports environment to which big data and AI technologies, which are representative technologies of the 4th Industrial Revolution, and approached them from the perspective of convergence of big data and AI technologies in the sports field. And the results are as follows. First, it is being used for player and game data analysis and team strategy establishment and operation. Second, by combining big data collected using GPS, wearable equipment, and IoT with artificial intelligence technology, scientific physical training for each player is possible through user individual motion analysis, which helps to improve performance and efficiently manage injuries. Third, with the introduction of an AI-based judgment system, it is being used for judge judgment. Fourth, it is leading the change in marketing and game broadcasting services. The technology of the 4th Industrial Revolution is bringing innovative changes to all industries, and the sports field is also in the process. The combination of big data and AI is expected to play an important role as a key technology in the rapidly changing future in a sports environment where scientific analysis and training determine victory or defeat.

A Study on the Influence of Originality and Usefulness of Artificial Intelligence Music Products on Consumer Perceived Attractiveness and Purchase intention

  • Meilin, Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.45-52
    • /
    • 2020
  • In this paper, we propose an intention to study the purchase of smart music by Chinese consumers. To study the influence of the originality and usefulness of intelligent music products on the purchase intention of Chinese consumers, and to explore how the originality and usefulness of intelligent music products affect the purchase intention. To achieve this goal, 372 questionnaires were collected through the Internet for frequency analysis, factor analysis, confidence analysis and structural equation analysis of data collection, and were carried out by SPSSV22.0 and AMOSV22.0 methods. Research the validation of assumptions in the model to reveal the psychological and behavioral responses of consumers to smart music products. The results show that the originality and usefulness of new products not only directly affect the purchase intention of Chinese consumers, but also indirectly affect their purchase intention by enhancing their attractiveness. The conclusion of this study is of guiding significance for the development of intelligent music product development and marketing strategy.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.

Innovation Patterns of Machine Learning and a Birth of Niche: Focusing on Startup Cases in the Republic of Korea (머신러닝 혁신 특성과 니치의 탄생: 한국 스타트업 사례를 중심으로)

  • Kang, Songhee;Jin, Sungmin;Pack, Pill Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.1-20
    • /
    • 2021
  • As the Great Reset is discussed at the World Economic Forum due to the COVID-19 pandemic, artificial intelligence, the driving force of the 4th industrial revolution, is also in the spotlight. However, corporate research in the field of artificial intelligence is still scarce. Since 2000, related research has focused on how to create value by applying artificial intelligence to existing companies, and research on how startups seize opportunities and enter among existing businesses to create new value can hardly be found. Therefore, this study analyzed the cases of startups using the comprehensive framework of the multi-level perspective with the research question of how artificial intelligence based startups, a sub-industry of software, have different innovation patterns from the existing software industry. The target firms are gazelle firms that have been certified as venture firms in South Korea, as start-ups within 7 years of age, specializing in machine learning modeling purposively sampled in the medical, finance, marketing/advertising, e-commerce, and manufacturing fields. As a result of the analysis, existing software companies have achieved process innovation from an enterprise-wide integration perspective, in contrast machine learning technology based startups identified unit processes that were difficult to automate or create value by dismantling existing processes, and automate and optimize those processes based on data. The contribution of this study is to analyse the birth of artificial intelligence-based startups and their innovation patterns while validating the framework of an integrated multi-level perspective. In addition, since innovation is driven based on data, the ability to respond to data-related regulations is emphasized even for start-ups, and the government needs to eliminate the uncertainty in related systems to create a predictable and flexible business environment.

Suggestions for establishing a smart system to revitalize the local traditional market (지역 전통시장 활성화를 위한 지능형 시스템 구축 제언)

  • Lee, Junghun;Cho, Jungwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.191-193
    • /
    • 2022
  • The advent of the 4th Industrial Revolution due to the trigger of digital technologies such as artificial intelligence and big data has caused many changes in society, culture, and industry. However, traditional markets in each region are not responding quickly to new distribution environments and consumer changes. In particular, in the case of traditional markets in Jeju, regional characteristics such as marketing strategies for tourists visiting Jeju have not been utilized. Therefore, this study proposes the establishment of a smart traditional market based on big data and artificial intelligence that utilizes the regional characteristics of Jeju. The research contents include customer profiling through visitor big data analysis, providing tourist movement results through traffic analysis, providing real-time popular product charts, and developing video-based fire and crime prevention functions.

  • PDF

The Study on the importance of Next Digital Marketing Factors by Using AHP Method: AD STARS Ad Tech 2017 Case (AHP분석을 활용한 향후 디지털 마케팅 구성요인의 중요도 연구: 부산국제광고제 애드텍 2017 사례를 중심으로)

  • Kim, Shin-Youp;Shim, Sung Wook
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study is to seek to find the importance of next digital marketing factors by using AHP method and analyze comparison between an advertising expert and a non-advertising expert. In results, the relative importance ranking is as follows; combination (0.26), transformation (0.259), optimization (0.243), and technology (0.238). The relative importance ranking of sub-factors is as follows: artificial intelligence and maching learning (0.086), big data (0.085), and contents curation (0.060). While the relative importance of combination and optimization for an advertising expert is higher than for non-advertising expert, the relative importance of transformation and technology for non-advertising is higher than for an advertising expert. This study provides managerial implication to build digital strategy based on these result.

Analysis of Industry-academia-research Cooperation Networks in the Field of Artificial Intelligence (인공지능 산·학·연 협력 공동연구 네트워크 분석)

  • Junghwan Lee;Seongsu Jang
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • This study recognized the importance of joint research in the field of artificial intelligence and analyzed the characteristics of the industry-academic-research technological cooperation ecosystem focusing on patents from the perspective of the Techno-Economic Segment (TES). To this end, economic entities such as companies, universities, and research institutes within the ecosystem were identified for 7,062 joint research projects out of 113,289 artificial intelligence patents over the past 10 years filed in IP5 countries since 2012. Next, this study identified the topics of technological cooperation and the characteristics of cooperation. As a result of the analysis, technological cooperation is increasing, and the frequency of all types of cooperation was high in industry-to-industry (40%) and industry-to-university (25.2%) relationships. Here, this study confirmed that the role of universities is being strengthened, with an increase in the ratio of companies with strengths in funding and analytical data, industry and universities with excellent research personnel (9.8%), and cooperation between universities (1.9%). In addition, as a result of identifying collaborative patent research areas of interest and collaborative relationships through topic modeling and network analysis, overall similar research interests were derived regardless of the type of cooperation, and applications such as autonomous driving, edge computing, cloud, marketing, and consumer behavior analysis were derived. It was confirmed that the scope of research was expanding, collaborating entities were becoming more diverse, and a large-scale network including Chinese-centered universities was emerging.

A Probabilistic Tracking Mechanism for Luxury Purchase Implemented by Hidden Markov Model, Bayesian Inference, Customer Satisfaction and Net Promoter Score (고객만족, NPS, Bayesian Inference 및 Hidden Markov Model로 구현하는 명품구매에 관한 확률적 추적 메카니즘)

  • Hwang, Sun Ju;Rhee, Jung Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.79-94
    • /
    • 2018
  • The purpose of this study is to specify a probabilistic tracking mechanism for customer luxury purchase implemented by hidden Markov model, Bayesian inference, customer satisfaction and net promoter score. In this paper, we have designed a probabilistic model based on customer's actual data containing purchase or non-purchase states by tracking the SPC chain : customer satisfaction -> customer referral -> purchase/non-purchase. By applying hidden Markov model and Viterbi algorithm to marketing theory, we have developed the statistical model related to probability theories and have found the best purchase pattern scenario from customer's purchase records.

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF