• Title/Summary/Keyword: 인공지능기술

Search Result 2,569, Processing Time 0.028 seconds

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

A Study on the Concept and User Perception of Smart Park - Focused on the IoT See Park Users in Daegu City - (스마트공원 개념 정립 및 공원 이용자 인식에 관한 연구 - 대구 IoT See 시범사업 공원 이용자를 대상으로 -)

  • Lee, Hyung-Sook;Min, Byoung-Wook;Yang, Tae-Jin;Eum, Jeong-Hee;Kim, Kwon;Lee, Ju-Yong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.41-48
    • /
    • 2019
  • Our daily lives are changing at a rapid pace and the concept of smart city is spreading, as the information communication technologies apply to various fields. However, efforts to prepare for changes in society due to technological evolution are insufficient in the field of landscape architecture. The purposes of this study are to explore the concept of smart parks, to investigate how smart technology has been applied to parks, and to identify the users' perception and satisfaction on smart park services. To this end, we conducted literature review, focus group interviews with experts, and a questionnaire survey with 180 users of the IoT See pilot smart park in Daegu. Smart parks can, as a result, be defined as sustainable parks that improve users' experience in parks and solve social and environmental problems faced by utilizing various high technology. Smart technologies introduced at the park so far have been mostly focused on safety and environmental areas, including AI CCTV, smart street lamp, and fine dust warning devices. The results of survey showed that not many users were aware of the smart services the park provided due to the lack of public communication as well as the nature of maintenance-oriented smart services. The survey also found that AR services for the education of historic parks were the least utilized, while solar power benches and WiFi service were most preferred by the park users. In conclusion, smart technologies need to be integrated with diverse park contents more centered user needs, providing services to enhance safety and environmental management in order to develop user-oriented smart parks.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Analysis of Daily Internet·Gaming·Smartphone Habit and Preference Factors of Moral Machine (인터넷·게임·스마트폰생활 습관과 모랄머신 선호도 요인 분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Technological advancements such as artificial intelligence, robots, and big data are revolutionizing the entire society. In this paper, we analyzed preliminary teachers' daily internet/gaming/smartphone habit and the difference between preference factors in gender and diagnosis group in the situation of ethical dilemma in driverless cars. The result shows most of the male students are in high risk group of daily internet/gaming usage, and male students tend to be more immersed in games compared to female students, which negatively affects their daily lives. Students who have at least one of the daily internet/gaming/smartphone habits are more likely to be classified as high-risk group in all three of daily internet/gaming/smartphone habit. Fortunately, the students perceived themselves addicted and wanted change their habits. An analysis by a moral machine of these students tells that there is no significant difference in preference between male and female students and among diagnosis groups. However, specifically in the ethical dilemma of driverless cars, all the groups of male, female, normal, high-risk showed they have priority in pedestrians over drivers, a large number of people over small, and people who obey traffic rules over who do not. The tendency was pronounced in female group and high-risk students prioritized people who are older and in lower social status.

Analysis of the influence of ship traffic and marine weather information on underwater ambient noise using public data (공공데이터를 활용한 선박 통행량 및 해양기상정보의 수중 주변소음에 대한 영향성 분석)

  • Kim, Yong Guk;Kook, Young Min;Kim, Dong Gwan;Kim, Kyucheol;Youn, Sang Ki;Choi, Chang-Ho;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.606-614
    • /
    • 2020
  • In this paper, we analyze the influences of ship traffic and marine weather information on underwater ambient noise. Ambient noise is an important environmental factor that greatly affects the detection performance of underwater sonar systems. In order to implement an automated system such as prediction of detection performance using artificial intelligence technology, which has been recently studied, it is necessary to obtain and analyze major data related to these. The main sources of ambient noise have various causes. In the case of sonar systems operating in offshore seas, the detection performance is greatly affected by the noise caused by ship traffic and marine weather. Therefore, in this paper, the impact of each data was analyzed using the measurement results of ambient noise obtained in coastal area of the East Sea of Korea, and public data of nearby ship traffic and ocean weather information. As a result, it was observed that the underwater ambient noise was highly correlated with the change of the ship's traffic volume, and that marine environment factors such as wind speed, wave height, and rainfall had an effect on a specific frequency band.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

An Ontology-based Generation of Operating Procedures for Boiler Shutdown : Knowledge Representation and Application to Operator Training (온톨로지 기반의 보일러 셧다운 절차 생성 : 지식표현 및 훈련시나리오 활용)

  • Park, Myeongnam;Kim, Tae-Ok;Lee, Bongwoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.47-61
    • /
    • 2017
  • The preconditions of the usefulness of an operator safety training model in large plants are the versatility and accuracy of operational procedures, obtained by detailed analysis of the various types of risks associated with the operation, and the systematic representation of knowledge. In this study, we consider the artificial intelligence planning method for the generation of operation procedures; classify them into general actions, actions and technical terms of the operator; and take into account the sharing and reuse of knowledge, defining a knowledge expression ontology. In order to expand and extend the general operations of the operation, we apply a Hierarchical Task Network (HTN). Actual boiler plant case studies are classified according to operating conditions, states and operating objectives between the units, and general emergency shutdown procedures are created to confirm the applicability of the proposed method. These results based on systematic knowledge representation can be easily applied to general plant operation procedures and operator safety training scenarios and will be used for automatic generation of safety training scenarios.

Korean Contextual Information Extraction System using BERT and Knowledge Graph (BERT와 지식 그래프를 이용한 한국어 문맥 정보 추출 시스템)

  • Yoo, SoYeop;Jeong, OkRan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Along with the rapid development of artificial intelligence technology, natural language processing, which deals with human language, is also actively studied. In particular, BERT, a language model recently proposed by Google, has been performing well in many areas of natural language processing by providing pre-trained model using a large number of corpus. Although BERT supports multilingual model, we should use the pre-trained model using large amounts of Korean corpus because there are limitations when we apply the original pre-trained BERT model directly to Korean. Also, text contains not only vocabulary, grammar, but contextual meanings such as the relation between the front and the rear, and situation. In the existing natural language processing field, research has been conducted mainly on vocabulary or grammatical meaning. Accurate identification of contextual information embedded in text plays an important role in understanding context. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn context easily from computer. In this paper, we propose a system to extract Korean contextual information using pre-trained BERT model with Korean language corpus and knowledge graph. We build models that can extract person, relationship, emotion, space, and time information that is important in the text and validate the proposed system through experiments.