산업 현장에 필수적으로 사용하는 유틸리티 시스템(Utility System)의 하나인 에어를 생산하는 공기압 축기의 운전방식은 조작 패널부에 사용자가 설정한 셋팅값에 의해 내부의 밸브를 제어하여 로딩 및 언로딩 운전을 한다. 이로 인해 대용량(100HP, 200HP)의 공기압축기를 여러대 사용하는 수용가에서는 연속 다발적인 운전으로 인한 전력 사용량의 변동으로 역률 저하 및 연속가동으로 인한 설비 과부하 및 내부 기계 베어링 피로도 증가 및 파손 등 고장이 발생되는 문제점이 있다. 따라서 본 논문에서는 인공 신경회로망(ANN:Artificial Neural Network)을 이용하여 최적의 에너지 운용 알고리즘을 제안하여 실계통의 문제점을 분석하여 개선하고자 한다.
섬유복합재료의 우수한 인장 성능은 섬유가 매트릭스의 균열 면에서 가교작용을 함으로써 발현되기 때문에 섬유의 분포 특성이 복합재료의 성능에 결정적인 영향을 미치게 된다. 그러나 PVA 섬유를 보강 섬유로 사용하는 섬유복합재료의 경우 PVA 섬유와 매트릭스 사이의 낮은 명암비와 PVA의 비전도성 특징으로 인하여 섬유의 위치 및 분포특성을 정량적으로 평가히는 방법은 연구가 미흡한 실정이다. 이 연구에서는 PVA 섬유를 보강 섬유로 사용하는 섬유복합재료의 섬유 분포 특성 등을 평가할 때 가장 중요한 과정인 섬유의 검출에 대하여 검출 성능을 향상 시킬 수 있는 알고리즘을 제시하였다. 제안한 알고리즘은 형광 현미경을 사용하여 얻은 섬유 이미지를 유형별로 분류하고, 분류된 분류된 섬유 이미지의 특성에 따라 분수령 알고리즘 (watershed algorithm)과 형태학적 재구성 (morphological reconstruction)을 이용하여 보다 정확히 섬유를 검출하는 과정으로 구성된다. 이 과정에서 섬유 이미지를 총 5가지 유형으로 분류하였으며, 인공신경회로망(ANN)을 분류기로 활용하기 위하여 형상 특성을 나타내는 5가지 특징값 즉, $F_s$, $F_c$, $F_p$, $F_l$과 $F_{rl}$을 추출하였다. 추출된 특징값에 대한 데이터베이스를 구축하여 ANN을 학습하여 분류기를 구축함으로써 섬유의 유형을 자동으로 분류할 수 있도록 하였다. 또한 5가지 섬유 이미지 유형 중에서 잘못 검출된 섬유이미지를 분수령 알고리즘과 형태학적 재구성을 통하여 섬유를 정확히 검출할 수 있는 기법을 제안하였다.
This paper describes new tecknique to obtain optimum value in calculating space harmonics in the motor design. First, develops general procedure in calculating slot harmonics, MMF harmonics, and systhesis of them. And then, trains Artificial Neural Network by classical method. Once trained ANN, it also computing different input data more quickly.
The quality of various noises generated in the refrigerator is one of the important factors in deciding quality of the product. The main focus of sound control design has been shifted from reduction of sound level to improvement of sound duality for customer's preference. Up to date the purpose of noise control is the minimization of noise level. However despite of gradual decrease of noise level, occasionally the perceptional quality of noise has not been improved. In this paper, the relation between subjective and objective evaluation of sound quality has established and sound quality index is developed using ANN for evaluation of refrigerator's noise of both the starting noise and the stable running noise of compressor. To verify the usefulness of the index, the results in this paper have been compared with those surveyed by Consumer Union in USA.
AE 신호와 재료의 기계적 물성과의 관계를 정량적으로 제시할 수 있는 방법을 개발하였다. 재료의 여러 가지 기계적 성질들 중 피로균열 거동에 관련된 응력확대계수를 중심으로 AE 신호와 같은 다변량 데이터의 처리에 많이 사용되고 있는 주성분 회귀분석과 비선형적 문제 해결에 적합한 신경회로망 기법을 이용하였다. 이를 위하여 강교량 부재인 SWS490B 강에 대한 피로균열전파 실험을 수행하였으며 표준 CT 시편에 대한 피로균열진전 시 발생하는 AE 신호의 각 변수와 응력확대계수와의 관계를 고찰하였다. 통계분석 방법인 변수선택법을 적용한 결과 AE 카운트(RC), 에너지(EN), 신호지속시간(ED)의 각각에 대한 유의성이 높은 것으로 나타났으나 전반적으로 전체 AE 변수를 모두 이용할 경우 통계적 유의성이 높은 것으로 나타났다. 부재의 반복하중 시 발생하는 피로균열진전을 정량적으로 도출할 수 있는 응력확대계수 추정모델을 개발하고 평가하였다. 미지 시료에 대하여 개발된 모델의 응력확대계수 예측 성능을 분석한 결과 주성분 회귀모델과 인공신경망 모델 모두 우수한 예측성능을 나타내었으나 전반적으로 인공신경망 모델이 주성분 회귀모델보다 다소 양호한 것으로 분석되었다.
태양광 시스템의 안정성과 신뢰성 향상을 위해서는 배터리의 잔존량 (State of Charge, SOC)을 정확하게 추정하여야 한다. 본 연구에서는 gradient descent, Levenberg-Marquardt 및 scaled conjugate gradient 학습방법을 사용한 인공 신경회로망 (Artificial Neural Networks, ANN)과 적응형 뉴로-퍼지 추론 시스템 (Adaptive Neuro-Fuzzy Inference System, ANFIS)을 사용한 SOC 추정방법을 제안한다. 입력으로는 충전 시작 전압 및 적류적산법을 통해 구한 충전 전류를 사용하여 추정된 SOC를 출력한다. 4개의 모델 (ANN-GD, ANN-LM, ANN-SCG, 및 ANFIS)을 사용하여 SOC 추정 방법을 구현하였고 실험을 통해 MATLAB을 사용하여 4개의 모델의 성능을 비교 분석하였다. 실험 결과로부터 ANFIS 모델을 사용한 배터리의 SOC 추정이 가장 정확도가 높았으며 빠른 속도로 수렴함을 확인하였다.
제조공정을 통해 생산된 화살의 성능을 평가하기 위한 방법으로, 활과 화살을 오랫동안 사용해 온 사냥꾼이나 레저 스포츠 용품을 만드는 기술자, 그리고 전문가의 개인적인 경험 등이 사용된다. 또한, 반복슈팅실험을 통해 얻어진 화살의 탄착점 집적도는 생산된 화살의 성능을 평가하기 위한 중요한 지표이다. 탄착점 집적도와 초고속카메라를 통해 촬영된 비행중인 화살의 이미지를 이용하여, 화살의 성능에 대한 연구가 수행되고 있다. 하지만, 화살의 특성(길이, 무게, 스파인, 오버랩, 곧기)과 탄착점의 분포간의 상관관계에 대한 연구는 부족하다. 본 논문에서는 탄착점 분포를 수치적으로 출력할 수 있는 시스템을 개발하고, 생산된 화살이 가지는 특성과 탄착점 사이의 상관관계모델을 구현하는 것이 목적이다. 모델의 입력은 화살이 가지는 특성(스파인, 곧기)이 사용되고, 출력은 화살의 노크 각도를 120도씩 회전시키면서 3번 반복 슈팅하여 얻어지는 삼각형 모양 좌표의 MAD(mean absolute distance)를 이용하였다. 상관관계 모델을 구현하기 위해서 입출력 학습데이터를 수집하였고, 모델의 구현을 위해서는 인공신경회로망(Artificial neural network, ANN)을 사용하였다.
In this paper, a new approach for the Synchronous Reluctance Motor control which ensures producing Maximum Torque per Ampere(MTPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The proposed scheme is verified validity through simulation.
The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(Artificial neural network). Finally it is applied to evaluate the sound qualify of refrigerator on the production line.
본 논문은 분산전원이 연계된 배전계통에 있어서 온 라인 리얼타임으로 조정이 가능한 최적 전압조정방안을 제시한다. 가능한 많은 수용가에게 적정한 전압을 공급하기 위하여 최적 송출전압이 결정되어져야 하는데, 여기서는 급변하는 배전계통의 급격한 부하변동과 분산전원의 불규칙적인 출력특성을 고려하기 위하여, 인공 신경회로망(ANN: Artificial Neural Network)을 이용한 최적 전압조정방안을 제시한다. 본 논문에서 제시한 알고리즘을 이용하여 배전 모델계통에 적용한 결과, 제안한 방법이 다수의 분산전원이 연계된 배전계통의 전압조정에 실용적인 방책임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.