• 제목/요약/키워드: 인간 행동 인식

검색결과 277건 처리시간 0.026초

인간 행동패턴 결정을 위한 상황인식 미들웨어에 대한 연구 (A Study Context Aware Middle for Decision of Human Behavior Pattern)

  • 최순용;최종화;신동일;신동규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.538-540
    • /
    • 2004
  • 이 논문에서 제안된 인간행동패턴 결정을 위한 상황인식 미들웨어는 Intelligent Home환경에서 인간과 Home환경과의 지능적인 Agent로써의 역할을 담당한다. 우리는 제시된 논문에서 인간행동패턴 결정을 위한 상황인식 미들웨어의 아키텍처를 제안하고 상황인식 미들웨어 내에서 동작하는 인간행동패턴 학습 및 결정 프로세서에 대한 구조와 구현내용에 대한 설명을 한다. 인간행동패턴을 결정하기 위한 기본 컨텍스트들을 환경 컨텍스트와 생체 컨텍스트로 크게 두 그룹으로 분리하였고 각 그룹은 세 개의 컨텍스트를 포함하고 있다. 환경과 생체로 나뉘어진 총 6개의 컨텍스트들을 정의하고 그 구성에 대하여 설명한다. 또한 컨텍스트는 9단계로 정규화 되어 상황인식 미들웨어에서의 다음 단계인 인간행동패턴 학습 및 결정 프로세서로 정규화 된 값을 전달된다. 인간행동패턴 학습 및 결정 프로세서에서는 패턴인식에 대한 세부사항을 설명한다.

  • PDF

3축 가속도 센서 기반 인간 행동 인식을 위한 기계학습 분석

  • 이송미;조희련;윤상민
    • 정보와 통신
    • /
    • 제33권10호
    • /
    • pp.65-70
    • /
    • 2016
  • 최근 스마트폰의 이용 사례가 증가함에 따라, 스마트폰에 내장되어 있는 다양한 센서를 이용하여 인간의 행동을 인식하기 위한 연구가 많은 각광을 받고 있다. 본고에서는 인간의 기본적인 행동 중에 앉기, 걷기, 달리기 등의 행동 특성을 스마트폰에 내장되어 있는 3축 가속도 센서를 통하여 분석하고 인간의 기본적 행동을 자동으로 인식하기 위한 방법에 대하여 비교 분석하는 것을 목적으로 한다. 구체적으로는 스마트폰에 내장되어 있는 3차원 가속도 센서로부터 추출된 데이터를 시간축에서 샘플링하여 인간의 행동을 인식하기 위한 기댓값 최대화 알고리즘, 랜덤 포레스트, 딥러닝 기반의 기계학습 방법을 비교하여 각 기계학습 알고리즘의 장단점을 분석한다.

Sparse Representation 기반의 인간행동인식에 대한 지역특징과 전역특징 비교 (Comparison of Local and Global Features for Sparse Representation-based Human Action Recognition)

  • 황정현;민현석;노용만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 추계학술대회
    • /
    • pp.246-247
    • /
    • 2013
  • 인간행동의 자동인식 기술은 영상보안 및 인간-사물 상호작용 분야에 핵심적 기술이다. 그러나 실제 비디오 환경에서는 인간 행동의 다양성 및 잡음 등 많은 제한점들로 인해 효과적인 행동인식에 어려움이 있다. 최근 이러한 문제점을 해결하기 위하여 많은 영상 처리 및 인식 분야에서 연구되고 있는 sparse representation 기반의 방법들이 제시되고 있다. 이에 본 논문에서는 효과적으로 sparse representation을 행동인식에 적용하고, sparse representation 기반 인간행동인식을 위해 사용되는 지역특징 및 전역특징에 대하여 비교했다.

  • PDF

소프트 컴퓨팅에 의한 인간행위 분류에 관한 연구 (Study for Human Behavior Classification using Soft-Computing Method)

  • 정태민;최우경;김성주;김용민;하상형;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.257-260
    • /
    • 2007
  • 인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.

  • PDF

인간행동 인식의 신경망적 접근 (A Neural Network Approach to Recognition of Human Behaviors)

  • 류중원;조성배
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.455-458
    • /
    • 2000
  • 인공 신경망은 체계적인 알고리즘으로 풀기 어려운 문제들을 해결하는데 사용되어오고 있다. 이는 인간의 뇌세포가 외부자극에 대해 반응하는 과정을 컴퓨터 시스템 상에서 구현한 것으로 새 인간과 컴퓨터의 상호작용을 연구하는데 흥미로운 접근방식이다. 본 논문에서는 신경망의 접근방법을 이용하여 인간행위 인식시스템을 구현하였다. 신경망을 이용해 구현된 컴퓨터 인식 시스템이 인간의 두 가지 정서 하에서 일어난 세가지 서로 다른 행동을 보고 행위자의 성별이나 강정상태를 얼마나 인식해낼 수 있는지 실험해 보았다. 특히, 성별 인식 실험에서는 신호탐지 이론에서 사용하는 인장도(discriminability)를 이용해 사람에 대한 이 시스템의 효율도를 계산하였다

  • PDF

계층적 색인 구조를 갖는 다중 가우시안 기반의 배경 모델을 이용한 실시간 인간 행동 인식 연구 (Real-time Human Activity Recognition Using Multiple Of Gaussian based Background Model with Hierarchical Index Structure)

  • 최진;한태우;조용일;양현승
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.750-754
    • /
    • 2007
  • 본 논문은 실내의 로비나 복도에 설치된 방범 카메라로부터 얻어진 일련의 영상으로부터 '걷기', '뛰기', '앉기', '일어서기', '넘어짐'의 비교적 짧은 시간에 일어나는 인간 행동들을 실시간으로 인식하는 시스템의 구현에 관해 다룬다. 먼저 입력으로 받은 영상을 계층적 색인 구조를 갖는 다중 가우시안 기반의 배경 모델을 이용하여 윤곽을 추출하고 객체를 인식하여 시간차에 의한 가중치로 누적하여 시간 템플릿을 만든다. 만들어진 시간 템플릿으로부터 특징을 추출하여 신경망 모델에 적용하여 5가지 인간행동을 구분한다. 구현된 시스템으로 인간행동 인식 실험을 수행하였는데, 실험 참가자들의 행동 방식이 약간씩 달랐음에도 불구하고 높은 인식률을 보여주었다.

  • PDF

힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식 (Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors)

  • 류정우;박천수;손주찬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.910-917
    • /
    • 2007
  • 인간-로봇 상호작용에서 접촉은 인간에게 정서적 안정을 줄 수 있는 중요한 상호작용 방법 중 하나이다. 그러나 지금까지 음성과 영상을 기반으로 인간-로봇 상호작용이 이루어지는 연구가 대부분이었다. 본 논문에서는 접촉을 통한 인간-로봇 상호작용을 위해 인간의 접촉행동을 인식하는 방법을 제안한다. 제안한 인식 방법에서 인식 과정은 전처리 단계와 인식 단계로 나뉜다. 전처리 단계는 접촉감지부에서 생성된 데이타로부터 인식할 수 있는 특징들을 계산하는 단계이고 인식 단계는 인식기를 통해 접촉행동으로 분류하는 단계이다. 접촉감지부는 힘 센서인 FSR 센서를 이용하여 제작하였고 인식기는 신경망 모델인 다층퍼셉트론을 사용하였다. 실험은 남자 여섯 명에 의해 생성된 세 가지 접촉행동; '때리다', '쓰다듬다', '간질이다' 데이타를 가지고, 사람별로 인식기를 생성하여 cross-validation으로 평가한 결과 82.9%의 평균인식률을 보였고, 사람별 구분 없이 한 개의 인식기로 실험한 결과는 74.5%의 평균 인식률을 보였다.

A New Residual Attention Network based on Attention Models for Human Action Recognition in Video

  • Kim, Jee-Hyun;Cho, Young-Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.55-61
    • /
    • 2020
  • 딥 러닝 기술의 발전과 컴퓨팅 파워 등의 개선으로 인해 비디오 기반 연구는 최근 많은 관심을 얻고 있다. 비디오 데이터가 이미지 데이터와 비교하여 가장 큰 차이는 비디오 데이터에는 많은 양의 시간적, 공간적 정보가 포함되어 있다는 점이다. 이처럼 비디오에 포함된 많은 양의 데이터로 인해 컴퓨터 비전 연구에 있어서 행동 인식은 중요한 연구 과제 중 하나이지만, 비디오와 같이 움직임이 있는 환경에서 인간의 행동 인식은 매우 복잡하고 도전적인 과제이다. 인간에 대한 여러 연구를 바탕으로 인공지능에서는 인간과 유사한 주의(attention)메커니즘이 효율적인 인식 모델이라는 것을 알게 되었다. 이 효율적인 모델은 이미지 정보와 복잡한 연속 비디오 정보를 처리하는 데 이상적이다. 본 논문에서는 이러한 연구배경을 기반으로, 비디오에서 인간의 행동을 효율적으로 인식하기 위해 먼저 인간의 행동에 주목한 후 비디오 행동 인식에 주의메커니즘을 도입하고자 한다. 논문의 주요내용은 두 가지 주의 메카니즘을 기반으로 컨볼루션 신경망을 이용한 새로운 3D 잔류 주의 네트워크를 제안함으로써 비디오에서 인간의 행동을 식별하고자 한다. 제안 모델의 평가 결과 최대 90.7%정도의 정확도를 보였다.

에이전트 행동에 기반한 의도 인식 컴퓨팅 (Agent's Activities based Intention Recognition Computing)

  • 김진옥
    • 인터넷정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.87-98
    • /
    • 2012
  • 에이전트의 의도를 인식하는 것은 사물지능형 컴퓨팅에서 인간컴퓨터 상호작용의 주요 부분이다. 컴퓨팅 시스템에서 인식 대상의 의도를 정확하게 유추하면 다수의 에이전트간의 협력 상황 이해와 특정 행동이 취해질 때의 상황 파악이 쉽기 때문이다. 본 연구는 다른 이의 행동을 해석하고 행동의 근거가 되는 의도와 목적을 추론하는 인간의 기제를 바탕으로, 컴퓨팅 시스템이 행동을 인식하여 습득한 사전 경험 데이터를 이용, 대상의 의도를 빠르게 인식하는 방법을 제안한다. 의도 인식을 수행하기 위해 제안 방법은 에이전트의 목적에 따른 행동 변화를 검출하고 시스템이 사전에 학습한 행동 정보를 모델링하기 위해 특정 형태의 행동 은닉마코프 형식을 이용한다. 에이전트의 의도를 추론하는 데 관점을 다양하게 취함으로써 시스템이 에이전트의 행동이 끝나기 전에 미리 의도를 추론하도록 한다. 의도 인식의 정확도, 조기 검출률과 정확 지속률에 대한 실험으로 여러 가지 행동을 취하는 에이전트의 의도 검출 결과를 정량적으로 제시함으로써 제안 연구가 효과적인 의도 인식 시스템 구현에 기여함을 보여준다.

인공 신경망 분류기를 이용한 인간 행동의 성별 인식 (Gender Recognition of Human Behavior with Neural Network Classifier)

  • 류중원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.140-142
    • /
    • 2000
  • 인간과 기계가 효과적인 상호작용을 하기 위해서는 컴퓨터 시스템이 인간의 행동을 인식할 수 있어야 한다. 본 연구에서는 인공 신경망을 사용하여 컴퓨터 시스템이 인간의 움직임을 관찰한 후 행위자의 성별을 인식하도록 하는 시스템을 구현하였다. 두 가지 감정상태(보통상태, 화난 상태) 하에서 일어난 인간의 세 가지 동작(문 두드리기, 손 흔들기, 물건 들어올리기)을 대상으로 하여 인간 동작 데이터를 통해 만들어진 학습 데이터를 통해 98.0%의 인식률을 보일 때까지 학습시키고 나서, 이전에 사용하지 않았던 새로운 데이터에 대해 얼마나 설별을 잘 구별해 내는지 실험하였다. 동작이 일어나는 동안 행위자의 몸 여섯 군데에서 속도 데이터를 얻어내서 신경망의 입력값으로 사용하였다. 그 결과 최저 62.3%이상 최고 94.3%까지 인간 성별을 구분해 낼 수 있었고 이는 같은 데이터에 대해서 사람을 통해 실험한 것보다 훨씬 나은 것이다.

  • PDF