• Title/Summary/Keyword: 인간 행동 인식

Search Result 277, Processing Time 0.022 seconds

A Study Context Aware Middle for Decision of Human Behavior Pattern (인간 행동패턴 결정을 위한 상황인식 미들웨어에 대한 연구)

  • 최순용;최종화;신동일;신동규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.538-540
    • /
    • 2004
  • 이 논문에서 제안된 인간행동패턴 결정을 위한 상황인식 미들웨어는 Intelligent Home환경에서 인간과 Home환경과의 지능적인 Agent로써의 역할을 담당한다. 우리는 제시된 논문에서 인간행동패턴 결정을 위한 상황인식 미들웨어의 아키텍처를 제안하고 상황인식 미들웨어 내에서 동작하는 인간행동패턴 학습 및 결정 프로세서에 대한 구조와 구현내용에 대한 설명을 한다. 인간행동패턴을 결정하기 위한 기본 컨텍스트들을 환경 컨텍스트와 생체 컨텍스트로 크게 두 그룹으로 분리하였고 각 그룹은 세 개의 컨텍스트를 포함하고 있다. 환경과 생체로 나뉘어진 총 6개의 컨텍스트들을 정의하고 그 구성에 대하여 설명한다. 또한 컨텍스트는 9단계로 정규화 되어 상황인식 미들웨어에서의 다음 단계인 인간행동패턴 학습 및 결정 프로세서로 정규화 된 값을 전달된다. 인간행동패턴 학습 및 결정 프로세서에서는 패턴인식에 대한 세부사항을 설명한다.

  • PDF

3축 가속도 센서 기반 인간 행동 인식을 위한 기계학습 분석

  • Lee, Song-Mi;Jo, Hui-Ryeon;Yun, Sang-Min
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.65-70
    • /
    • 2016
  • 최근 스마트폰의 이용 사례가 증가함에 따라, 스마트폰에 내장되어 있는 다양한 센서를 이용하여 인간의 행동을 인식하기 위한 연구가 많은 각광을 받고 있다. 본고에서는 인간의 기본적인 행동 중에 앉기, 걷기, 달리기 등의 행동 특성을 스마트폰에 내장되어 있는 3축 가속도 센서를 통하여 분석하고 인간의 기본적 행동을 자동으로 인식하기 위한 방법에 대하여 비교 분석하는 것을 목적으로 한다. 구체적으로는 스마트폰에 내장되어 있는 3차원 가속도 센서로부터 추출된 데이터를 시간축에서 샘플링하여 인간의 행동을 인식하기 위한 기댓값 최대화 알고리즘, 랜덤 포레스트, 딥러닝 기반의 기계학습 방법을 비교하여 각 기계학습 알고리즘의 장단점을 분석한다.

Comparison of Local and Global Features for Sparse Representation-based Human Action Recognition (Sparse Representation 기반의 인간행동인식에 대한 지역특징과 전역특징 비교)

  • Hwang, Jung-Hyon;Min, Hyun-seok;Ro, Yong Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.246-247
    • /
    • 2013
  • 인간행동의 자동인식 기술은 영상보안 및 인간-사물 상호작용 분야에 핵심적 기술이다. 그러나 실제 비디오 환경에서는 인간 행동의 다양성 및 잡음 등 많은 제한점들로 인해 효과적인 행동인식에 어려움이 있다. 최근 이러한 문제점을 해결하기 위하여 많은 영상 처리 및 인식 분야에서 연구되고 있는 sparse representation 기반의 방법들이 제시되고 있다. 이에 본 논문에서는 효과적으로 sparse representation을 행동인식에 적용하고, sparse representation 기반 인간행동인식을 위해 사용되는 지역특징 및 전역특징에 대하여 비교했다.

  • PDF

Study for Human Behavior Classification using Soft-Computing Method (소프트 컴퓨팅에 의한 인간행위 분류에 관한 연구)

  • Jeong, Tae-Min;Choe, U-Gyeong;Kim, Seong-Ju;Kim, Yong-Min;Ha, Sang-Hyeong;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.257-260
    • /
    • 2007
  • 인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.

  • PDF

A Neural Network Approach to Recognition of Human Behaviors (인간행동 인식의 신경망적 접근)

  • 류중원;조성배
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.455-458
    • /
    • 2000
  • 인공 신경망은 체계적인 알고리즘으로 풀기 어려운 문제들을 해결하는데 사용되어오고 있다. 이는 인간의 뇌세포가 외부자극에 대해 반응하는 과정을 컴퓨터 시스템 상에서 구현한 것으로 새 인간과 컴퓨터의 상호작용을 연구하는데 흥미로운 접근방식이다. 본 논문에서는 신경망의 접근방법을 이용하여 인간행위 인식시스템을 구현하였다. 신경망을 이용해 구현된 컴퓨터 인식 시스템이 인간의 두 가지 정서 하에서 일어난 세가지 서로 다른 행동을 보고 행위자의 성별이나 강정상태를 얼마나 인식해낼 수 있는지 실험해 보았다. 특히, 성별 인식 실험에서는 신호탐지 이론에서 사용하는 인장도(discriminability)를 이용해 사람에 대한 이 시스템의 효율도를 계산하였다

  • PDF

Real-time Human Activity Recognition Using Multiple Of Gaussian based Background Model with Hierarchical Index Structure (계층적 색인 구조를 갖는 다중 가우시안 기반의 배경 모델을 이용한 실시간 인간 행동 인식 연구)

  • Choi, Jin;Han, Tae-Woo;Cho, Yong-Il;Yang, Hyun-S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.750-754
    • /
    • 2007
  • 본 논문은 실내의 로비나 복도에 설치된 방범 카메라로부터 얻어진 일련의 영상으로부터 '걷기', '뛰기', '앉기', '일어서기', '넘어짐'의 비교적 짧은 시간에 일어나는 인간 행동들을 실시간으로 인식하는 시스템의 구현에 관해 다룬다. 먼저 입력으로 받은 영상을 계층적 색인 구조를 갖는 다중 가우시안 기반의 배경 모델을 이용하여 윤곽을 추출하고 객체를 인식하여 시간차에 의한 가중치로 누적하여 시간 템플릿을 만든다. 만들어진 시간 템플릿으로부터 특징을 추출하여 신경망 모델에 적용하여 5가지 인간행동을 구분한다. 구현된 시스템으로 인간행동 인식 실험을 수행하였는데, 실험 참가자들의 행동 방식이 약간씩 달랐음에도 불구하고 높은 인식률을 보여주었다.

  • PDF

Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors (힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식)

  • Ryu, Joung-Woo;Park, Cheon-Shu;Sohn, Joo-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.910-917
    • /
    • 2007
  • Of the possible interactions between human and robot, touch is an important means of providing human beings with emotional relief. However, most previous studies have focused on interactions based on voice and images. In this paper. a method of recognizing human touching behaviors is proposed for developing a robot that can naturally interact with humans through touch. In this method, the recognition process is divided into pre-process and recognition Phases. In the Pre-Process Phase, recognizable characteristics are calculated from the data generated by the touch detector which was fabricated using force sensors. The force sensor used an FSR (force sensing register). The recognition phase classifies human touching behaviors using a multi-layer perceptron which is a neural network model. Experimental data was generated by six men employing three types of human touching behaviors including 'hitting', 'stroking' and 'tickling'. As the experimental result of a recognizer being generated for each user and being evaluated as cross-validation, the average recognition rate was 82.9% while the result of a single recognizer for all users showed a 74.5% average recognition rate.

A New Residual Attention Network based on Attention Models for Human Action Recognition in Video

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.55-61
    • /
    • 2020
  • With the development of deep learning technology and advances in computing power, video-based research is now gaining more and more attention. Video data contains a large amount of temporal and spatial information, which is the biggest difference compared with image data. It has a larger amount of data. It has attracted intense attention in computer vision. Among them, motion recognition is one of the research focuses. However, the action recognition of human in the video is extremely complex and challenging subject. Based on many research in human beings, we have found that artificial intelligence-like attention mechanisms are an efficient model for cognition. This efficient model is ideal for processing image information and complex continuous video information. We introduce this attention mechanism into video action recognition, paying attention to human actions in video and effectively improving recognition efficiency. In this paper, we propose a new 3D residual attention network using convolutional neural network based on two attention models to identify human action behavior in the video. An evaluation result of our model showed up to 90.7% accuracy.

Agent's Activities based Intention Recognition Computing (에이전트 행동에 기반한 의도 인식 컴퓨팅)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2012
  • Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.

Gender Recognition of Human Behavior with Neural Network Classifier (인공 신경망 분류기를 이용한 인간 행동의 성별 인식)

  • 류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.140-142
    • /
    • 2000
  • 인간과 기계가 효과적인 상호작용을 하기 위해서는 컴퓨터 시스템이 인간의 행동을 인식할 수 있어야 한다. 본 연구에서는 인공 신경망을 사용하여 컴퓨터 시스템이 인간의 움직임을 관찰한 후 행위자의 성별을 인식하도록 하는 시스템을 구현하였다. 두 가지 감정상태(보통상태, 화난 상태) 하에서 일어난 인간의 세 가지 동작(문 두드리기, 손 흔들기, 물건 들어올리기)을 대상으로 하여 인간 동작 데이터를 통해 만들어진 학습 데이터를 통해 98.0%의 인식률을 보일 때까지 학습시키고 나서, 이전에 사용하지 않았던 새로운 데이터에 대해 얼마나 설별을 잘 구별해 내는지 실험하였다. 동작이 일어나는 동안 행위자의 몸 여섯 군데에서 속도 데이터를 얻어내서 신경망의 입력값으로 사용하였다. 그 결과 최저 62.3%이상 최고 94.3%까지 인간 성별을 구분해 낼 수 있었고 이는 같은 데이터에 대해서 사람을 통해 실험한 것보다 훨씬 나은 것이다.

  • PDF