• Title/Summary/Keyword: 익형유동

Search Result 152, Processing Time 0.028 seconds

Numerical Simulation of Suction Performance of a Forward-Sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서 흡입성능 유동해석)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jinhan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.13-18
    • /
    • 2014
  • Computational and experimental studies on a forward-sweep inducer for turbopumps were performed to see the effect of the blade sweep on the suction performance of the inducer. Computational results show that backflows at the inlet decrease in the case of the forward-sweep inducer by inhibiting pre-rotation of the inflow and the low pressure region near the tip also diminishes, which is presumed to improve the suction performance of the inducer. The predicted suction performance of the inducer is compared with the experimental result. The result shows that the computation overestimates the suction performance of the inducer compared to the value from the experiment.

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

DYNAMIC STALL PREDICTION WITH TRANSITION OVER AN OSCILLATING AIRFOIL (천이를 고려한 진동하는 익형의 동적 실속 예측)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Chang-Joo;Chung, Ki-Hoon;Jung, Kyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.358-361
    • /
    • 2010
  • A Reynolds-Averaged Navier-Stokes (RANS) code with transition prediction model is developed and the computational results on an oscillating airfoil are compared with the experimental data for OA209 airfoil. An approximated eN method that can predict transition onset points and the length of transition region is directly applied to the RANS code. The hysteresis loop in dynamic stall is compared for the computational results using transition prediction and fully turbulent models with the experimental data. Results with transition prediction show more correlation with the experimental data than the fully turbulent computation.

  • PDF

Effect of Incidence Angle on the Wake Turbulence of a Turbine Rotor Blade (입사각이 터빈 동익의 후류 난류유동에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.887-894
    • /
    • 2005
  • This paper describes effects of incidence angle on the wake turbulent flow of a high-turning turbine rotor blade. For three incidence angles of -5, 0 and 5 degrees, energy spectra as well as profiles of mean velocity magnitude and turbulence intensity at mid-span are reported in the wake. Vortex shedding fiequencies are obtained from the energy spectra. The result shows that as the incidence angle changes from -5 to 5 degrees, the suction-side wake tends to be widened and the deviation angle is increased. Strouhal numbers based on the shedding fiyequencies have a nearly constant value, regardless of the tested incidence angles.

An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field (박리유동장에서 저속 익형의 공기역학적 성능해석)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF

CAVITATION FLOW ANALYSIS OF 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • An, S.J.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.20-24
    • /
    • 2011
  • In this paper, numerical simulation of cavitation flow for modified NACA66 hydrofoil was made by using the multi-phase RANS equation based on pseudo-compressibility. The Homogeneous mixture model comprised of the mixture continuity, mixture momentum and liquid volume fraction equations was utilized. A vertex-centered finite-volume method was used in conjunction 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing The Spalart-Allmaras one equation model was employed for the closure of turbulence. Reasonable agreements were obtained between the calculation results and the experiment for pressure coefficients on the hydrofoil surface.

  • PDF

Computational Study on Dynamic Characteristics of a Flapped Airfoil (전산해석을 이용한 고양력장치의 동특성 고찰)

  • Lee, Yung-Gyo;Kim, Cheol-Wan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206-209
    • /
    • 2011
  • During landing approach, an airplane could experience dynamic unstable motion by the combination of a gust and elevator control to cancel the disturbances. This situation is dangerous and could lead to a loss of an airplane. In this paper, numerical analysis was used to study the effect of pitch oscillating 2-D high lift devices in a landing condition. Experimental data on a pitching naca0012 airfoil was used for code validation. Dynamic characteristics of an airfoil, single slotted flap for mid-class passenger aircraft were analyzed. Unsteady Navier-Stokes analysis was performed with Spalart-Allmaras turbulence model for separation dominant low speed flow. As a result, flow hysteresis of a flapped airfoil was more complex than that of an oscillating airfoil. So, dynamic analysis of a flap in a landing condition is very important for operational safety.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

A Study on the Flow Characteristics of Aircraft Wing Surface with Various Dimple Patterns (익형 표면의 딤플 형상변화에 따른 유동특성 연구)

  • Hong, Woo;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.54-59
    • /
    • 2012
  • In order to have the high efficiency of aircraft wing and to improve the energy efficiency in field of eco-friendly transportation, the performance characteristics of the aircraft wing were studied with the change of lift to drag ratio through the CFD analysis. The design process was focused on generating the high lift force and low drag force as the lift to drag ratio was increased. In this paper, various dimple patterns were numerically designed to investigate the flow characteristics. Hexagon-and circle-shaped dimples, dimple distance and position were changed as the artificial conditions. The numerical analyses were conducted by using the commercial code, ANSYS CFX. Numerical results dependent on the turbulence intensity and lift to drag ratio distribution were graphically depicted for various dimple patterns.

Effects of Blade Configuration on the Performance of Induced Gas Flotation Machine (익형 변화에 따른 유도공기부상기 성능특성 연구)

  • Song, You-Joon;Lee, Ji-Gu;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.41-46
    • /
    • 2017
  • The flotation performance of the induced gas flotation (IGF) machine is considerably influenced by geometric configurations of rotor and stator. The interaction of rotor and stator, which are the most important components in IGF, serves to mix the air bubbles. Thus, the understanding of flow characteristics and consequential analysis on the machine are essential for the optimal design of IGF. In this study, two-phase (water and air) flow characteristics in the forced-air mechanically stirred Dorr-Oliver flotation cell was investigated using ANSYS CFX. In addition, the void fraction and the velocity distributions are determined and presented with different blade configurations.