• Title/Summary/Keyword: 익형두께

Search Result 30, Processing Time 0.025 seconds

서로 다른 두께 비를 가진 Eppler 387익형에서의 공력특성에 관한 연구

  • Choe, Won-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.632-637
    • /
    • 2016
  • This study shows what difference would be made to the aerodynamic characteristic with different thickness ratio of the same airfoil, Eppler 387, at low Reynolds number, at the angle of attack of $0^{\circ}$. Konkuk Univ.'s airfoil has a bigger thickness ratio than that of the original Eppler 387 airfoil. The reason for the thicker camber is a Pt 100 ohm heater mounted inside the Konkuk Univ.'s airfoil and this was assumed to make some differences to aerodynamic characteristic. The comparison of these two airfoils' CFD data, provided by EDSION_CFD, with real experiment that had been made in subsonic wind tunnel at Konkuk Univ. is done. A finer result would come out if the complement of the homogeneity of the wind tunnel's fluid is done in the future.

  • PDF

Computational Aerodynamic Analysis of Airfoils for WIG(Wing-In-Ground-Effect) -Craft (지면효과익기 날개에 대한 전산 공력 해석)

  • Joh, Chang-Yeol;Kim, Yang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.37-46
    • /
    • 2004
  • Several notes on ground effects drawn from Navier-Stokes analyses and their aerodynamic interpretations were addressed here; For two-dimensional ground effect, the change of surface pressure due to image vortex, the venturi effect due to thickness and the primary inviscid flow phenomena of ground effect, and for three-dimensional ground effect, strengthened wing tip vortices, increased effective span and the outward drift of trailing vortices. Irodov's criteria were evaluated to investigate the static longitudinal stability of conventional NACA 6409 and DHMTU 8-30 airfoils. The analysis results demonstrated superior static longitudinal stability of DHMTU 8-30 airfoil. The DHMTU airfoil has quite lower value of lrodov's criterion than the conventional NACA airfoil, which require much smaller tail volume to stabilize the whole WIG-craft at its design stage.

A Study on Aerodynamic Characteristics of Flatback Airfoils (Flatback 에어포일의 뒷전 두께에 따른 공력 특성 연구)

  • Mun, Chan-Ung;Choe, Tae-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.17-20
    • /
    • 2012
  • 본 연구는 전산유체해석 프로그램인 EDISON_CFD를 이용하여 NACA63-425 에어포일과 이 에어포일을 기반으로 만든 뒷전 두께가 2% 4%인 NACA63-425G02, NACA63-425G04에 대하여 두께 변화에 따른 공력 특성 변화를 수치해석을 수행 하였다. 난류점성내의 압축성 조건에서 받음각에 따른 양력계수, 항력계수, 양항비 등을 비교하여 Flatback 에어포일의 장단점에 대하여 결과를 분석해 보았다.

  • PDF

THE EFFECTS OF MACH NUMBER AND THICKNESS RATIO OF AIRFOIL ON TRANSONIC FLOW OF MOIST AIR AROUND A THIN AIRFOIL WITH LATENT HEAT TRANSFER (잠열 전달이 일어나는 얇은 익형주위의 천음속 습공기 유동에서의 마하수와 익형 두께비의 영향)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2012
  • Once the condensation of water vapor in moist air around a thin airfoil occurs, liquid droplets nucleate. The condensation process releases heat to the surrounding gaseous components of moist air and significantly affects their thermodynamic and flow properties. As a results, variations in the aerodynamic performance of airfoils can be found. In the present work, the effects of upstream Mach number and thickness ratio of airfoil on the transonic flow of moist air around a thin airfoil are investigated by numerical analysis. The results shows that a significant condensation occurs as the upstream Mach number is increased at the fixed thickness ratio of airfoil($\epsilon$=0.12) and as the thickness ratio of airfoil is increased at the fixed upstream Mach number($M_{\infty}$=0.80). The condensate mass fraction is also increased and dispersed widely around an airfoil as the upstream Mach number and thickness ratio of airfoil are increased. The position of shock wave for moist air flow move toward the leading edge of airfoil when it is compared with the position of shock wave for dry air.

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine (초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구)

  • Lee,Eun-Seok;Kim,Jin-Han;Jo,Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.99-106
    • /
    • 2003
  • Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.

Effect of Airfoil surface roughness sensitivity to aerodynamic design of wind turbine blade (에어포일 표면 거칠기 민감도가 풍력 블레이드 공력 설계에 미치는 영향에 대한 연구)

  • Shin, Hyungki;Bang, Hyungjun;Kim, Soohyun;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34.1-34.1
    • /
    • 2011
  • 풍력발전기 블레이드 설계에 적용하기 위한 에어포일의 선택 혹은 설계에 있어서 가장 중요한 요소 가운데 하나는 표면 거칠기 변화에 따른 에어포일 성능의 민감도이다. 블레이드 표면은 대기 중의 먼지, 곤충 시체 등에 따라 계속적으로 오염되며 이는 에어포일의 설계 당시의 성능을 계속적으로 저감시킨다. 이러한 표면 거칠기의 증가는 에어포일의 종류에 따라 성능을 50% 이상 저감시키며 이는 블레이드의 설계 성능을 저감시키므로 블레이드 설계를 위한 에어포일 선정 단계에서 표면거칠기 민감도가 가능한 낮은 에어포일을 선정하여 블레이드의 공력 설계를 수행하게 된다. 본 연구에서는 표면 거칠기 변화로 인한 에어포일의 성능 저감이 실제 블레이드의 성능에 어떠한 영향을 주는지를 살펴 보았다. 에어포일은 표면이 깨끗한 상태와 ZZ 테입을 부착하여 표면이 심각하게 오염된 상황을 모사하여 두 경우 모두를 풍동 시험한 DU 에어포일 시리즈를 선정하였다. 3MW 급의 블레이드에 대하여 두께비 40%~18%의 에어포일을 적용하여 설계를 수행하였으며 두께비 30%~18%에어포일에 대하여 표면이 깨끗한 경우와 오염된 경우의 데이터를 적용하여 블레이드 성능 변화 및 다른 성능 변수들의 변화를 살펴보았다. 블레이드 성능에 대하여는 BEMT를 적용하여 설계 및 시뮬레이션을 수행하였다. 연구 결과 에어포일의 성능 저하는 블레이드 공력 효율에 있어서 8%의 저감을 나타내며 7%의 극한하중 저감을 보이는 것으로 나타났다.

  • PDF

The Improvement of Aerodynamic Performance of Flapping-Airfoil Using Thickness Variation Airfoil (두께 변화가 있는 익형을 이용한 flapping-Airfoil의 공력성능 개선)

  • Lee Jung Sang;Kim Chongam;Rho Oh Hyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.787-790
    • /
    • 2002
  • In this work, numerical experiments ave conducted to find out the optimal shape of flapping-airfoil using thickness variation airfoils. In the previous study of flapping-airfoil, we had found that the thrust efficiency of thicker airfoil is better than thinner one, but the latter has higher thrust coefficient. Therefore, we have combined thin(NACA0009) and thick(NACA0015)airfoil to overcome these demerits of each airfoil. Using this combined airfoil, we can achieve acceptable aerodynamic performances from thrust efficiency and coefficient points of view. In order to computational study, we have used parallel-implemented incompressible Wavier-Stokes solver. Computational results show how to design leading and trailing edge shapes.

  • PDF

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Dynamic Stall Control Using Aerodynamic Sensitivity Analysis (민감도 해석을 이용한 동적실속 제어)

  • Ahn, Tai-Sul;Kim, Hyoung-Jin;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.10-20
    • /
    • 2002
  • The present paper investigates methods to control dynamic stall using an optimal approach. An unsteady aerodynamic sensitivity analysis code is developed by a direct differentiation method from a two-dimensional unsteady compressible Navier-Stokes solver including a two-equation turbulence model. Dynamic stall control is conducted by minimizing an objective function defined at an instant instead of integrating for a period of time. Unsteady sensitivity derivatives of the objective function are calculated by the sensitivity code, and optimization is carried out using a linear line search method at every physical time step. Numerous examples of dynamic stall control using control parameters such as nose radius, maximum thickness of airfoil, or suction show satisfactory results.