• Title/Summary/Keyword: 이항 모수

Search Result 49, Processing Time 0.021 seconds

이항 모수의 Blyth-Still 신뢰구간에 대한 소고

  • Yu, Seong-Mo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.227-230
    • /
    • 2002
  • 표본의 크기가 작을 경우에 이항분포의 모수에 대한 신뢰구간을 구하는 대표적인 방법으로는 Clopper-Pearson 방법과 Blyth-Still 방법이 있다. Clopper-Pearson 방법에 의한 신뢰구간은 이항 모수가 포함되는 커버리지 확률이 목표로 하는 신뢰수준보다 상대적으로 크다는 문제점이 있다. Blyth-Still 방법은 이러한 문제점을 개선시켰다. 그러나, Blyth-Still에 의해서 표로 보고된 신뢰구간을 적용할 경우 표본의 크기와 이항 모수의 값에 따라서 커버리지 확률이 목표하는 신뢰수준보다 작은 경우가 발생한다. 그러나, 이는 Blyth-Still 방법 자체의 문제점이 아니며 단지 보고된 표의 유의한 소수점 자릿수와 관계가 있다. 본 논문은 Blyth-Still 방법에 의한 좀 더 정확한 신뢰구간을 제시한다.

  • PDF

일반혼합이항모형에서 평가일치도의 로버스트 추정

  • 엄종석
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.74-84
    • /
    • 1995
  • 혼합이항모형은 생물학, 혹은 심리학분야에서 많이 다루는 모형이다. 이 혼합모형에서 진단자간의 일치도를 나타내는 k 는 이항모형에 혼합되어지는 사전분포 $\xi$(p)에 따라 다른 형태를 갖는다. 그래서 $\xi$(p)에 의존적이지 않은 모수를 정의 하고, 이에 대한 실증적 추정값 $\hat k$을 일반혼합이항모형에서 k에 대한 추정값으로 사용하였다. 매개모수의 영향을 줄이기 위하여 모수를 직교화하였다. 베타이항모형으로 부터 표본을 추출하여 구한 최우추정값 $\hat k_m$과 이 표본을 이용하여 구한 $\hat k$을 비교하여 본 결과 k와 $\lambda$가 직교하는 영역에서 $\hat k$$\hat k_m$보다 편기가 작아지는 경우가 있을 만큼 $\hat k$이 효과적이었다.

  • PDF

A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes (베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구)

  • Park, Yuha;Choi, Ilsu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2017
  • Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.

Comparison of Estimators of Dependence Related Parameter in Generalized Binomial Distribution (일반화 이항분포모형에서 시행간 종속성 규정모수의 추정량 비교 연구)

  • Moon, Myung-Sang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.279-288
    • /
    • 1999
  • In many cases where the conventional binomial distribution fails to apply to real world data, it is mainly due to the lack of independence among Bernoulli trials. Several authors have proposed models that are useful when independence assumption is not satisfied. In this paper, one proposed model is adapted, and estimators of dependence related parameter that is crucial in defining that model are considered. Simulation is performed to compare two estimators(method of moment estimator and maximum likelihood estimator) of dependence related parameter, and conclusions are made.

  • PDF

Truncation Parameter Selection in Binary Choice Models (이항 선택 모형에서의 절단 모수 선택)

  • Kim, Kwang-Rae;Cho, Kyu-Dong;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.811-827
    • /
    • 2010
  • This paper deals with a density estimation method in binary choice models that can be regarded as a statistical inverse problem. We use an orthogonal basis to estimate density function and consider the choice of an appropriate truncation parameter to reflect the model complexity and the prediction accuracy. We propose a data-dependent rule to choose the truncation parameter in the context of binary choice models. A numerical simulation is provided to illustrate the performance of the proposed method.

On the actual coverage probability of binomial parameter (이항모수의 신뢰구간추정량에 대한 실제포함확률에 관한 연구)

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.737-745
    • /
    • 2010
  • In this paper, various methods for finding confidence intervals for the p of binomial parameter are reviewed. We compare the performance of several confidence interval estimates in terms of actual coverage probability by small sample Monte Carlo simulation.

A Study on the Estimation of Confidence Intervals for Discrete Distribution

  • Kim, Dae-Hak;Oh, Kwang-Sik;Lee, Sang-Bok
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1-11
    • /
    • 2003
  • 일반적으로 모수에 대한 신뢰구간 추정량이 점 추정량보다 훨씬 더 선호되고 있으며 많이 알려져 있다. 그러나 이산형 분포의 경우에는 주로 대 표본 근사 이론에 입각한 근사 신뢰구간이 많이 사용되고 있다. 본 논문에서는 여러 가지 이산형 분포 가운데에서 가장 많이 활용되고 있는 이항분포와 포아송 분포의 모수에 대한 다양한 신뢰구간 추정량들을 소개하고 대 표본 근사 이론에 의한 신뢰구간뿐만 아니라 소 표본의 경우에도 유용하게 이용될 수 있는 신뢰구간 등을 살펴보고 이들 신뢰구간들을 비교하였다.

  • PDF

A Development of Traffic Accident Estimation Model by Random Parameter Negative Binomial Model: Focus on Multilane Rural Highway (확률모수를 이용한 교통사고예측모형 개발: 지방부 다차로 도로를 중심으로)

  • Lim, Joon Beom;Lee, Soo Beom;Kim, Joon-Ki;Kim, Jeong Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.662-674
    • /
    • 2014
  • In this study, accident frequency prediction models were constructed by collecting variables such as geometric structures, safety facilities, traffic volume and weather conditions, land use, highway design-satisfaction criteria along 780km (4,372 sections) of 4 lane-highways over 8 areas. As for models, a fixed parameter model and a random parameter model were employed. In the random parameter model, some influences were reversed as the range was expressed based on specific probability in the case of no fixed coefficients. In the fixed parameter model, the influences of independent variables on accident frequency were interpreted by using one coefficient, but in the random parameter model, more various interpretations were took place. In particular, curve radius, securement of shoulder lane, vertical grade design criteria satisfaction showed both positive and negative influence, according to specific probability. This means that there could be a reverse effect depending on the behavioral characteristics of drivers and the characteristics of highway sections. Rather, they influence the increase of accident frequency through the all sections.

Comparative Simulation Studies on Generalized Binomial Models (일반화 이항모형의 적합도 평가)

  • Baik, E.J.;Kim, K.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.507-516
    • /
    • 2011
  • Comparative studies on generalized binomial models (Moon, 2003; Ng, 1989; Paul, 1985; Kupper and Haseman, 1978; Griffiths, 1973) are restrictive in that the models compared are rather limited and MSE of the estimates is the only measure considered for the model adequacy. This paper is aimed to report simulation results which provide possible guidelines for selecting a proper model. We examine Pearson type of goodness-of-fit statistic to its degrees of freedom and AIC for the overall model quality. MSE and Bias of the individual estimates are also considered as the component fit measures. Performance of some models varies widely for a certain range of the parameter space while most of the models are quite competent. Our evaluation shows that the Extended Beta-Binomial model (Prentice, 1986) turns out to be particularly favorable in the point that it provides consistently excellent fit almost all over the values of the intra-class correlation coefficient and the probability of success.

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.