• Title/Summary/Keyword: 이축 하중

Search Result 47, Processing Time 0.025 seconds

Additional Damage of A17075-T651 under $90^{\circ}C$ Out-of phase Biaxial Loading from Crystal Structure Dependence ($90^{\circ}C$위상차의 이축하중 하에서 A17075-T651의 부가적 손상에 관한 결정구조 의존성에 관한 연구)

  • Lee, Hyun-Woo;Oh, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 1997
  • Accounting for the additional damages come out from non-proportional loading path effect, material damage according to crystal structure dependence was studied. Microscopic observations of damaged material by SEM(Scanning Electron Microscope) showed crystal structure dependence. Biaxial in-phase loaded specimens showed the slips of same direction, which pararell each other, but biaxial 90.deg. out-of-phase loaded specimens showed multiply crossed slips. S. H. Doong and D. F. Socie reported that wavy/planar or planar slip material showed the increase in the cyclic hardening level during non-proportional cycling. From these results, the additional hardening and non-proportional loading effects were related with slip mechanism, and the slip mechanism was related with crystal structure. In the present study, a damage mechanism which accounts for the non-proportional loading effect from crystal structure dependence was considered and applied to A17075-T651.

Fatigue Crack Initiation around a Hole under Out-of-phase Biaxial Loading (이상 이축 하중 하에서 구멍 주위에서의 피로 균열 발생)

  • Huh, Yong-Hak;Park, Pi-Lip;Kim, Dong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1695-1702
    • /
    • 2003
  • Fatigue crack initiation around a hole subjected to biaxial fatigue loads with a phase difference was investigated. Axial and torsional biaxial fatigue loads with different phase differences and biaxiality of 1/√3 were applied to thin-walled tubular specimens. Five phase differences of 0, 45, 90, 145 and 180 degrees were selected. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than 90$^{\circ}$. Whereas directions for tests with phase differences greater than 90$^{\circ}$ got away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than 90. . Furthermore, it was shown that the fatigue initiation life decreased with increment of phase difference for fatigue tests with phase differences less than 90$^{\circ}$, but it increased for tests with phase difference greater than 90$^{\circ}$. The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Structural Analysis of Gasket and GDL for Enhanced Performance of PEMFC (고분자 전해질 연료전지 가스켓 및 GDL의 구조 해석)

  • Yoon, Jin-Young;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.642-650
    • /
    • 2008
  • In this paper, structural behavior of Gasket and GDL of a PEMFC stack is studied to improve the performance and to secure the safety. In the Gasket analysis Mooney-Rivlin strain energy function is used to consider hyperelasticity of load and displacement. The material properties is determined by testing specimens of the gasket at uni-axial and equi-biaxial mode and compared with finite element analysis results. By measuring a thickness change, the material property of GDL is determined. The pressure drop of a unit cell is measured along the channel for the clamping force. A cross sectional change of channel base on the experimental data is obtained experimentally and compare with FEM analysis results.

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.

Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading (이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory (비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석)

  • Lee, Won-Hong;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5930-5938
    • /
    • 2013
  • The sigmoid functionally graded mateiral(S-FGM) theory is reformulated using the nonlocal elatictiry of Erigen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical solutions of biaxial buckling of nano-scale plates are presented using this theory to illustrate the effects of nonlocal theory and power law index of sigmoid function on buckling load. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index, (ii) length, (iii) nonlocal parameter, (iv) aspect ratio and (v) mode number on nondimensional biaxial buckling load are studied. To validate the present solutions, the reference solutions are discussed.

MICROSCOPIC OBSERVATION OF DRAPED COMPOSTTE MATERIALS : Picture Frame Test (직물 복합재료의 드레이핑 미소 거동 관찰: 사진틀 전단실험)

  • Kang Jae-Hoon;Chang Seung-Hwan
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.13-19
    • /
    • 2005
  • In this paper deformation of micro-mechanical parameters such as tow interval, tow thickness and change in tow amplitude are investigated by using dry fabrics (Five-harness satin weave) under shear deformation. To evaluate the observation results according to the generated in-plane forces in the material, bias extension, biaxial test results are compared with. It was found that a picture frame test with a misaligned fibre orientation angle shows large differences in deformation between tensile and compressive tow directions.