• Title/Summary/Keyword: 이차원

Search Result 1,187, Processing Time 0.026 seconds

Studies on the millimeter-wave Passive Imaging System III (밀리미터파 수동 이미정 시스템 연구 III)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.111-116
    • /
    • 2007
  • We have developed a passive millimeter wave (PMMW) imaging system with two-dimensional imaging arrays. For the imaging system we achieved single-substrate imaging-array element which include all necessary component such as Fermi tapered slot antenna (TSA), a balun, LNA's and a detector circuit on it. Two-dimensional arrays for real-time imaging at the 35 GHz band are currently under development. We will be able to make an advanced PMMW image system based on our system with the $2\times2$ imaging array in the near future.

Purification of Crude Protein Mixture from Panax ginseng and Hairy Root for Proteome Analysis (인삼 및 모상근의 프로테옴 분석을 위한 단백질 추출 방법)

  • 김승일;김수정;남명희;서종복;김수현;권경훈;김영환;최종순;유종신
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.347-351
    • /
    • 2001
  • Panax ginseng C.A. Meyer is a well-known Korean traditional medicine. Until now, even though major research of ginseng has been focused on the pharmacological effect, clinical application and chemical analysis of extracted secondary metabolite for several years, the physiology and gene functions of ginseng were not well known. In this research, we have developed the protein extraction methods of ginseng root and hairy root for proteome analysis in order to elucidate the gene(s) function of ginseng. Using the liquid nitrogen (equation omitted) TCA method as protein extraction method, about 660 protein spots were detected on the 2-DE gel of hairy root. Additionally, comparative analysis result of 2-DEs of ginseng root (equation omitted) hairy root suggested that proteomes of same organism could be changeable according to the culture condition, growth stages and other stimulus.

  • PDF

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

Physics-based Simulation of a VTVL Vehicle for 2D Games (2D 게임을 위한 수직 이착륙 비행체의 물리 기반 시뮬레이션)

  • Moon, Sukjin;Choi, Min Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • In this paper, we consider a physics-based 2D flight simulation game where users can easily control realistic flight of a vehicle equipped with two thrusters that allow vertical takeoff and vertical landing. The flight vehicle can be manipulated by directly controlling the thrusting force at each thruster using a pair of analog input devices such as joysticks. However, it might require too much practice to make aerobatic flying solely with this kind of control. We propose a set of fly-by-wire methods that provide easy-to-use, intuitive control of a VTVL vehicle. Based on PD controllers, the proposed methods allow users to specify the velocity or position of the vehicle directly. Furthermore, they are easy to understand and simple to implement. We expect that the proposed vehicle model and control mechanism could be used in various 2D games.

A VLSI Implementation of Real-time 8$\times$8 2-D DCT Processor for the Subprimary Rate Video Codec (저 전송률 비디오 코덱용 실시간 8$\times$8 이차원 DCT 처리기의 VLSI 구현)

  • 권용무;김형곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.58-70
    • /
    • 1990
  • This paper describes a VLSI implementation of real-time two dimensional DCT processor for the subprimary rate video codec system. The proposed architecture exploits the parallelism and concurrency of the distributes architecture for vector inner product operation of DCT and meets the CCITT performance requirements of video codec for full CSIF 30 frames/sec. It is also shown that this architecture satisfies all the CCITT IDCT accuracy specification by simulating the suggested architecture in bit level. The efficient VLSI disign methodology to design suggested architecture is considered and the module generator oriented design environments are constructed based on SUN 3/150C workstation. Using the constructed design environments. the suggensted architecture have been designed by double metal 2micron CMOS technology. The chip area fo designed 8x8 2-D DA-DCT (Distributed Arithmetic DCT) processor is about 3.9mmx4.8mm.

  • PDF

Application Development and Performance Analysis of Smartphone-based QR Code Interpreter (스마트폰 기반의 QR코드 해석기 성능분석 및 응용개발)

  • Park, Chan-Jung;Hyun, Jung-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2242-2250
    • /
    • 2009
  • Recently, with the advance of Ubiquitous era, the types of services become diverse. Especially, due to the rapid development of mobile technology, the new functions of mobile phones are added and the new applications of mobile phones are developed actively. Among the various applications related to mobile phones, 2 dimensional barcode-based applications are increasing. 2 dimensional barcode is mostly used for the management of past record. However, by combing 2 dimensional barcode with mobile phones, the application areas of 2 dimensional barcode are expanded to the means of publicity for education, tourism, and festivals. In this paper, we develop a QR code decoder running on smartphones, which connects on-line and off-line. In addition, we modify our decoder by detecting the point for performance enhancement based on TRIZ. We compare our decoder with an open-source based decoder in terms of the code size of decoding and the speed of decoding in order to prove that our decoder has a better performance than the other. Finally, we introduce two applications: u-map and u-pamphlet as QR code applications.

Analysis of Breakdown Voltages of Double Gate MOSFET Using 2D Potential Model (이차원 전위분포모델을 이용한 이중게이트 MOSFET의 항복전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1196-1202
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for channel doping concentration and device parameters of double gate(DG) MOSFET using two dimensional potential model. The low breakdown voltage becomes the obstacle of power device operation, and breakdown voltage decreases seriously by the short channel effects derived from scaled down device in the case of DGMOSFET. The two dimensional analytical potential distribution derived from Poisson's equation have been used to analyze the breakdown voltage for device parameters such as channel length, channel thickness, gate oxide thickness and channel doping concentration. Resultly, we could observe the breakdown voltage has greatly influenced on device dimensional parameters as well as channel doping concentration, especially the shape of Gaussian function used as channel doping concentration.

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF

Real-Time 3-D Ultrasound Imaging Method using a 2-D Curved Array (이차원 곡면 어레이를 이용한 실시간 3차원 초음파 영상화 기법)

  • 김강식;한호산;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.351-364
    • /
    • 2002
  • Conventional 3D ultrasound imaging using mechanical ID arrays suffers from poor elevation resolution due to the limited depth-of-focus (DOF). On the other hand, 3D imaging systems using 2D phased arrays have a large number of active channels and hence require a very expensive and bulky beamforming hardware. To overcome these limitations, a new real-time volumetric imaging method using curved 2-D arrays is presented, in which a small subaperture, consisting of 256 elements, moves across the array surface to scan a volume of interest. For this purpose, a 2-D curved array is designed which consists of 90$\times$46 elements with 1.5λ inter-element spacing and has the same view angles along both the lateral and elevation directions as those of a commercial mechanical 1-D array. In the proposed method, transmit and receive subapertures are constructed by cutting the four corners of a rectangular aperture to obtain a required image qualify with a small number of active channels. In addition the receive subaperture size is increased by using a sparse array scheme that uses every other elements in both directions. To suppress the grating lobes elevated due to the increase in clement spacing, fold-over array scheme is adopted in transmit, which doubles the effective size of a transmit aperture in each direction. Computer simulation results show that the proposed method can provide almost the same and greatly improved resolutions in the lateral and elevation directions, respectively compared with the conventional 3D imaging with a mechanical 1-D array.