• Title/Summary/Keyword: 이질재료

Search Result 60, Processing Time 0.018 seconds

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

Deep Drawing of Glass Fiber Reinforced Thermoplastic Composite (유리섬유 강화 열가소성 복합재료 판재의 소성가공)

  • 이중희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.88-95
    • /
    • 1996
  • 유리섬유가 강화된 열가소성 복합재료 판재의 성형성에 대한 이해를 돕기 위해 이론적 고찰과 실험적 고찰이 행해졌다. 성형시험에서 사용된 형상은 임의의 방향으로 위치한 유리섬유를 중량비로 30% 함유한 폴리프로필렌 재료가 사용되었고, 시험된 형상은 판재의 굽힘성이나 인장성을 측정하는데 널리 사용되는 스위프트컵(Swift flat-bottomed cup)모양이다. 성형시험과 재료시험은 플리프로필렌 Matrix의 유리성 천이온도(Glass transition temperature)와 용융온도 사이에서 행해졌다. 본 연구의 이론과 고찰을 위해서 재료의 평면 방향으로는 동질성을 그리고 그 직각 방향으로는 이질성을 가진 연속체 물질로 가정하여 유도하였다. 이러한 이론적 결과는 실험 결과와 비교되어졌고,이를 통해 시험된 재료의 최적의 성형조건을 제시하였다.

  • PDF

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

Evaluation of Response Variability of Functionally Graded Material Beam with Varying Sectional Area due to Spatial Randomness in Elastic Modulus along Axial Direction (기능경사재료 변단면 보에서 축방향 탄성계수의 공간적 불확실성에 의한 응답변화도 평가)

  • Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • In this paper, a scheme to evaluate the response variability for functionally graded material (FGM) beam with varying sectional area is presented. The randomness is assumed to appear in a spatial domain along the beam axis in the elastic modulus. The functionally graded material categorized as composite materials, however without the drawbacks of delamination and occurrence of cracks due to abrupt change in material properties between layers in the conventional composite materials. The functionally graded material is produced by the gradual solidification through thickness direction, which endows continuous variation of material properties, which makes this material performs in a smooth way. However, due to difficulties in tailoring the gradients, to have uncertainty in material properties is unavoidable. The elastic modulus at the center section is assumed to be random in the spatial domain along the beam axis. Introducing random variables, defined in terms of stochastic integration, the first and second moments of responses are evaluated. The proposed scheme is verified by using the Monte Carlo simulation based on the random samples generated employing the spectral representation scheme. The response variability as a function of correlation distance, the effects of material and geometrical parameters on the response variability are investigated in detail. The efficiency of the proposed scheme is also addressed by comparing the analysis time of the proposed scheme and MCS.

A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors (복합환경인자에 의한 FRP 보강근의 성능저하 특성)

  • Oh, Hong Seob;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • In spite of high resistant to corrosion and its strength, over the last two decades, concerns still remain about the durability of FRP materials under severe environmental and thermal exposures. In this paper, authors experimentally examine the combined degradation by thermal and chemical attacks in heterogeneous FRP rebar be made up with various fibers and resins. Five types of Carbon, Glass and Hybrid FRP rebars had manufactured by different process and surface patterns are adopted for the experiments such as weight change, interlaminar shear strength, SEM and FT-IR analysis. FRP specimens were immersed in alkaline or distilled solution up to 150 days and then thermal exposed on 60, 100, 150 and $300^{\circ}C$ for 30 minutes. From the test results, the degradation of FRP bars are influnced by the resin type and manufacturing process as well as the fiber, and ILSS of exposed FRP bar in solutions is slightly increased in initial stage and then decresed with the passing of immersed time. But, in this test, it is observed that the discrepancy of ILSS between degraded by alkaline solution and distilled water is negligible value.

A study on the Application of the Space Design of Green Amenity (그린 어메너티의 공간디자인 적용에 관한 연구 -2016년~2018년 메종 & 오브제(Masion & Objet) 세계 박람회를 중심으로-)

  • Hong, Yun Joo
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.40
    • /
    • pp.45-61
    • /
    • 2019
  • This study attempts to examine the recent trend of 'Maison & Objet' exhibition which shows everything that forms a space, and seek cases where such 'green amenity' is applied. In terms of morphology, a minimal space was filled with a curved shape, and gradually a design that reproduces nature was produced. As the maximalism gradually emerged, decorative elements were added to the design, and a lot of craft products appeared. In terms of materials, the emotion of naturalism was the most common, and natural wood materials were mainly used. These materials combine with various heterogeneous materials to complete a new design, and natural elements were shaped in space. In terms of colors, the theme in 2016 was 'Wild', and it was possible to see a space where wild nature can be experienced. It showed various colors of nature centered on brown and green of trees. 'Silence' in 2017 is distinguished and characterized by its pink color. Also, pieces of warm reddish brown furniture were made. In the past, brass or rose gold would be trendy, but in 2017, gold or silver colors showed a greater popularity. In 2018, 'Show Room' was the theme, and the representative color was green, which affected new designs with yellow and pink.

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

An analytic study on the bond stress between concrete and steel tube in CFT tublar column (충전원형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Kang, Joo-Won;Park, Sung-Moo;Kim, Youn-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) tublar column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled tublar column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling ell contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option. After yielding of models, analytic results is less than that of experimental results.

  • PDF

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.

Impact analysis of a liminated composite beam by the finite element method (유한 요소법에 의한 적층 복합 보의 충격 해석)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.652-661
    • /
    • 1988
  • A theoretical attempt is made to analyze the dynamic contact force and response of laminated composite beams subjected to the transverse impact of steel balls. A beam finite element model based on the modified theory for laminated composites in conjunction with static contact laws is formulated for the theoretical investigation. Finally, it is shown that the present results are in good agreement with some existing solutions or wave propagation theory.