• 제목/요약/키워드: 이진신경망

검색결과 187건 처리시간 0.024초

메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning)

  • 박승현;조성원
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.705-711
    • /
    • 2011
  • 본 논문은 산업응용을 목표로 효과적인 차량 번호판 인식 알고리즘을 제안한다. 자동차 이미지를 얻은뒤 캐니 에지 추출(Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 신경망으로 미리 학습된 가중치 값과 비교되며, 최종 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식 (A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network)

  • 조재현;양황규
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.304-308
    • /
    • 2010
  • 본 논문에서는 컬러 공간 및 형태학적 특징과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 번호판의 후보영역 중에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다. 추출된 번호판 영역에서 번호판 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 분류된 개별 문자 및 숫자 코드를 ART2 알고리즘에 적용하여 학습 및 인식을 한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 각각 100장의 이미지를 대상으로 실험한 결과, 제시된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm)

  • 박승현;조성원
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

딥 러닝 기반 코로나19 흉부 X선 판독 기법 (A COVID-19 Chest X-ray Reading Technique based on Deep Learning)

  • 안경희;엄성용
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.789-795
    • /
    • 2020
  • 전 세계적으로 유행하는 코로나19로 인해 많은 사망자가 보고되고 있다. 코로나19의 추가 확산을 막기 위해서는 의심 환자에 대해 신속하고 정확한 영상판독을 한 후, 적절한 조치를 취해야 한다. 이를 위해 본 논문은 환자의 감염 여부를 의료진에게 제공해 영상판독을 보조할 수 있는 딥 러닝 기반 코로나19 흉부 X선 판독 기법을 소개한다. 우선 판독모델을 학습하기 위해서는 충분한 데이터셋이 확보되어야 하는데, 현재 제공하는 코로나19 오픈 데이터셋은 학습의 정확도를 보장하기에 그 영상 데이터 수가 충분하지 않다. 따라서 누적 적대적 생성 신경망(StackGAN++)을 사용해 인공지능 학습 성능을 저하하는 영상 데이터 수적 불균형 문제를 해결하였다. 다음으로 판독모델 개발을 위해 증강된 데이터셋을 사용하여 DenseNet 기반 분류모델 학습을 진행하였다. 해당 분류모델은 정상 흉부 X선과 코로나 19 흉부 X선 영상을 이진 분류하는 모델로, 실제 영상 데이터 일부를 테스트데이터로 사용하여 모델의 성능을 평가하였다. 마지막으로 설명 가능한 인공지능(eXplainable AI, XAI) 중 하나인 Grad-CAM을 사용해 입력 영상의 질환유무를 판단하는 근거를 제시하여 모델의 신뢰성을 확보하였다.

CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발 (Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber)

  • 변종윤;전창현;김현준;이재준;박헌일;이진욱
    • 한국수자원학회논문집
    • /
    • 제56권6호
    • /
    • pp.403-417
    • /
    • 2023
  • 본 연구에서는 CCTV 영상 기반 강우강도 산정 시 필수적으로 요구되는 적정 강우 이미지 DB를 구축하기 위한 방법론을 개발하였다. 먼저, 실환경에서 불규칙적이고 높은 변동성을 보일 수 있는 변수들(바람으로 인한 빗줄기의 변동성, 녹화 환경에서 포함되는 움직이는 객체, 렌즈 위의 흐림 현상 등)에 대한 통제가 가능한 한국건설생활환경시험연구원 내 기후환경시험실에서 CCTV 영상 DB를 구축하였다. 서로 다른 5개의 실험 조건을 고려하여 이상적 환경에서 총 1,728개의 시나리오를 구성하였다. 본 연구에서는 1,920×1,080 사이즈의 30 fps (frame per second) 영상 36개에 대하여 프레임 분할을 진행하였으며, 총 97,200개의 이미지를 사용하였다. 이후, k-최근접 이웃 알고리즘을 기반으로 산정된 최종 배경과 각 이미지와의 차이를 계산하여 빗줄기 이미지를 분리하였다. 과적합 방지를 위해 각 이미지에 대한 평균 픽셀 값을 계산하고, 설정한 픽셀 임계치보다 큰 자료를 선별하였다. 180×180 사이즈로의 재구성을 위해서 관심영역을 설정하고 10 Pixel 단위로 이동을 진행하여 픽셀 변동성이 최대가 되는 영역을 산정하였다. 합성곱 신경망 모델의 훈련을 위해서 120×120 사이즈로 재변환하고 과적합 방지를 위해 이미지 증강 과정을 거쳤다. 그 결과, 이미지 기반 강우 강도 합성곱 신경망 모델을 통해 산정된 결과값과 우량계에서 취득된 강우자료가 전반적으로 유사한 양상을 보였으며, 모든 강우강도 실험 조건에 대해서 약 92%의 데이터의 PBIAS (percent bias)가 절댓값 범위 10% 이내에 해당하였다. 본 연구의 결과물과 전이학습 등의 방법을 연계하여 기존 실환경 CCTV의 한계점을 개선할 수 있을 것으로 기대된다.

AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가 (Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine)

  • 신택수;홍태호
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.25-41
    • /
    • 2011
  • 최근 몇 년간 SVM(support vector machines)기법은 패턴인식 또는 분류의사결정문제를 위한 분석기법으로서 기존의 데이터마이닝 기법과 비교할 때, 매우 높은 성과를 갖는 것으로 인식되어 왔다. 더 나아나 많은 연구자들은 SVM기법이 1980년대 이후 대표적인 예측 및 분류모형으로 인정받은 인공신경망기법(ANNs : Artificial Neural Networks)에 비해 더 성과가 좋다는 사실을 실증적으로 입증해 왔다(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003). 일반적으로 이와 같이 다양한 데이터마이닝 기법에 의해 분석되는 이진분류 또는 다분류 의사결정문제들은 특히 금융분야 등에 있어서 오분류비용에 민감하며, 이로 인한 오분류의 경제적 손실도 상대적으로 매우 크다고 할 수 있다. 따라서 기업부도예측모형과 같은 이진분류모형의 결과값을, 부도확률에 기초하여 정교하게 계산된 사후확률의 개념으로서 다분류의 신용등급평가의 문제로 변환할 필요가 있다. 그러나, SVM 모형의 결과값은 기본적으로 그와 같은 부도확률분포를 보여주지 않는다. 따라서, 그러한 확률분포를 정교하게 보여줄 방법을 제시할 필요가 있다(Platt, 1999; Drish, 2001). 본 연구는 AdaBoost 알고리즘기반의 SVM 모형을 이용하여, 이진분류모형으로서 IT 기업의 부실예측모형에 적용한 후, 이 SVM 모형의 예측결과를 SVM의 손실함수에 적용하여 계산된 값을 사후부도확률의 정규분포 특성에 따라 이를 구간화하여 IT기업에 대한 다분류 신용등급 평가의 문제로 전환시키는 방법을 제시하였다. 그리고 본 연구에서 제안하는 방법은 이러한 AdaBoost 알고리즘기반 SVM 모형이 각 기업이 고유한 신용위험(부도확률)을 갖고 있다는 조건하에서, 신용등급부여를 위한 부도확률분포 구간을 정교하게 조정함으로써 오분류 문제를 좀 더 줄일 수 있음을 제시하였다.

MCC의 부유부상 효율에 미치는 MCC의 표면에너지와 액상의 표면장력의 영향에 대한 기초연구

  • 이학래;이진희;박일;이용민;한신호;조중연
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.20-20
    • /
    • 2001
  • 우리나라 제지산업은 화학펼프의 80%를 수입에 의존하고 었으나 고지회수율 및 이용율이 세계적으로 볼 때 매우 높은 환경친화적 산업이다. 고지 재활용 공정 중에 서 가장 핵심적인 공정인 부유부상 공정은 고상계의 표면특성 차이를 이용하여 소수성 의 잉크업자를 기포에 부착시켜 부상을 통하여 제거하는 공정이다. 고지 사용의 고도화 를 위해서는 부유부상 공정의 효율 증대가 절실히 요구되고 있다. 또한 부유부상 공정 의 핵심적인 인자로 부유부상을 통하여 제거되는 고형물질의 표면 특성 특히 소수화도 가 중요하다는 것은 보고된 바 있으나 부유부상에 필요한 표면 특성의 존재 여부와 표 면 에너지와 부유부상 효율의 관계 등에 관한 기본적인 연구가 더욱 필요한 실정이다. 이에 본 연구에서는 부유부상 공정을 기초과학적 측면에서 규명하기 위해 마 이 크로 크리 스탈린 셀룰로오스(Microcrystalline cellulose: MCC)를 모델 물질로 사용하 고 이들의 표면특성을 접촉각 측정을 통하여 평가하였다. 친수성의 표면 특성을 지닌 M MCC의 표면 특성을 소수성으로 바꾸기 위하여 AKD(alkyl ketene dimer)의 함량별로 사이징 처리하여 소수성을 지닌 잉크를 모벨링 하고 친수성 MCC를 염색시약을 이용 하여 흑색으로 염색함으로써 소수화 된 MCC와의 색차를 두어 섬유를 모델링 하였다. 이렇게 제조된 MCC의 소수화 정도를 평가하기 위하여 분말상태인 MCC를 pellet으로 제조하여 각기 다른 표면장력과 표변특성을 지난 용액을 이용하여 Advancing Contact A Angle을 측정하고 다양한 방법으로 이를 분석하여 시료의 표면에너지를 평가하였다 그 리고 부유부상 셀내의 액상의 이온강도와 표면장력 등 화학적인 인자에 의한 부유부상 분리효과를 평가하였다.있었다 (그림 2). 칼렌다는 종이를 높은 전단력과 압축력으로 변형시키는데 비해 도침은 단순히 압축 압력만을 종이에 가하는 것이 다르다고 볼 수 있는데, 라 이너지와 백상지가 같은 조건하에서 왜 이러한 큰 차이를 보이는 이유를 아직 알수 없다.해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다. within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된

  • PDF

퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성 (Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks)

  • 이진이;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 퍼지사상화(fuzzy mapping)와 FLVQ(fuzzy learning vector quantization)에 의한 사상된(mapped)코드북을 사용하는 화자적용 음성합성 알고리즘 을 제안하고, 기존의 음성합성결과와 비교한다. 입력화자와 기준화자의 코드북은 FLVQ 방법으로 작성한다. 사상된 코드북은 퍼지 히스토그램을 작성하여 이들을 선형 결합함으로써 얻어지는 퍼지 사상화에 의하여 작성된다. 대응 코드벡터의 퍼지 히스 토그램은 동일 입력벡터에 대해 선택된 입력화자의 코드벡터와 기준화자의 코드벡터 사이의 DTW(dynamic time warping)을 행하여 대응하는 코드벡터들의 소속값 (membership value)을 누적하여 얻는다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음성을 퍼지벡터 양자화한 다음, FCM(fuzzy c means) 합성규칙을 사용하 여 사상된 코드북내의 코드벡터가 아닌 새로운 하나의 합성벡터를 얻게 되어 좀 더 입력화자에 적응된 합성음을 얻게 된다. 이 기술의 성능평가는 성별이 서로 다른 화 자를 입력화자 및 기준화자로 선정하여 입력화자의 음성에 가까운 정도로 평가하였으 며 그 결과 기존의 음성합성보다 입력화자에 더 적용된 합성음을 얻었다.

  • PDF

연상기억과 뉴런 연결강도 모듈레이터를 이용한 해마 학습 알고리즘 개발 (Development of the Hippocampal Learning Algorithm Using Associate Memory and Modulator of Neural Weight)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.37-45
    • /
    • 2006
  • 본 논문에서는 인지학에서 연구되고 있는 동질 연상 기억 현상과 장기 및 단기 기억 강화 조절 기능을 담당하는 해마의 두뇌 원리를 공학적으로 모델링한 MHLA(Modulatory Hippocampus Learning Algorithm)의 개발을 제안한다. 해마에서 중요시 하는 연관된 3단계 조직(DG, CA3, CAl)에 기반한 동질 연상 메모리를 구성하도록 하였으며, 장기 기억 학습에 모듈레이터(modulator)를 추가하여 학습 수렴 속도를 향상시켰다. 해마 구조에서 정보는 3단계 순서에 따라 치아 이랑 영역에서 통계적인 편차를 적용하여 호감도 조정에 따라서 반응 패턴으로 이진화 되고, CA3 영역에서 자기 연상 메모리를 하여 패턴이 재구성이 된다. CA3의 정보를 받는 CAI영역에서는 모듈레이터가 적용되는 신경망에 의해 장기기억 인식에 이용되는 연결n강도의 수렴이 빠르게 학습된다. MHLA의 성능을 측정하기 위하여 포즈 및 표정과 화질 상태에 따라 분류된 얼굴 영상에 PCA(Principal Component Analysis)를 적용하여 특정 벡터들을 계산하 MHLA로 학습한 후, 인식률을 확인 하였다. 실험 결과, 제안한 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템 (Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm)

  • 진문용;박종빈;이동석;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.361-368
    • /
    • 2014
  • 차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.