• Title/Summary/Keyword: 이중 겹침

Search Result 9, Processing Time 0.017 seconds

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Analysis of Bone Mineral Density According to Lumbar Spine Rotation and Inclination (허리뼈 회전과 기울기에 따른 골밀도 분석)

  • Je, Jaeyong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.779-783
    • /
    • 2019
  • Osteoporosis is a disease that increases the risk of fracture. In this study, dual energy X-ray absorptiometry (DXA) was used to compare bone density according to the lumbar spine rotation and inclination. The results of the showed that the bone density decreases with the rotation of the lumbar spine, but the result was not predicted in the inclination of the lumbar spine. This is due to the change of the inclusion of lumbar spine in the area of the bone and the bone density due to the overlap between the lumbar spine 1 and 4. In other words, the Radiogical technologists needs to make efforts to prevent the rotation of lumbar spine and the overlap according to the inclusion to obtain the accurate bone density results.

A Study on Stress Concentration Factor of Composite Laminate Mechanical Joints (복합재료 적층판 기계적 체결부 응력집중계수에 대한 고찰)

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.194-200
    • /
    • 2013
  • In this paper, the results of composite laminate mechanical joints test(ASTM D5961) are compared with the theoretical strength calculations and FEM analysis results. To calculate the S.C.F.(stress concentration factor) on joint strength, equations on metallic and composite materials in ASM Handbook used and compared with experimental results. The difference of joint strength are compared by geometrical parameters and joining types(single/double lap joint). In FEM analysis, to find efficient FEM model on composite laminate mechanical joint, several FEM models are compared with experimental test results.

Theoretical Study on The Interaction Between Benzo(a)pyrene and Cytochrome P-450 (Benzo(a)pyrene 과 Cytochrome P-450의 대한 상호작용에 대한 이론적 연구)

  • 도성탁
    • Biomedical Science Letters
    • /
    • v.1 no.1
    • /
    • pp.89-94
    • /
    • 1995
  • Considering the planar structure and nonpolar properity of benzo(a)pyrene(B(a)p) and the planar heme part of cytochrome P-450, stacking interaction is probable. MO calculation on B(a)P and heme part of cytochrome P-450 were carried out to dertermine probable stacking interaction models. In this case, orbital interaction is most important. Accordingly, the stacking positions have high eigen vector in frontier orbital and boning type between two molecules. In this way, five probate models were selected and examined by MN2 and MO method. The most probable .stacking interaction model which is the 4, 5, 6 positions of B(a)P overlap carbon atom and pyrrole ring of ring of heme group was determined.

  • PDF

A Study on the Strength of Metal-Composite Hybrid Joints (금속-복합재 하이브리드 체결부의 강도 특성 연구)

  • Jung, Jae-Woo;Song, Min-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Strength of Composite-to-Aluminum Bonding and Bolting Hybrid Joints (복합재-알루미늄 이종재료 하이브리드 체결부 강도 특성에 관한 연구)

  • Jung, Jae-Wo;Kim, Tae-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • Composite-to-aluminum joins were tested to get failure loads and modes for three types of joins; adhesive bonding, bolt fastening, and adhesive-bolt hybrid joining. Film type adhesive FM73 and paste type adhesive Cytec EA9394S were used for aluminum and composite bonding to make a double-lap joint. A digital microscope camcorder was used to monitor the failure initiation and propagation. It was found that the hybrid joining is an effective method to strengthen the joint when the mechanical fastening is stronger than the bonding as in the case of using the paste type adhesive. On the contrary, when the strength of the bolted joint is lower than the strength of the bonded joint as in the joint with the film type adhesive, the bolt joining contribute little to the hybrid joint strength.

  • PDF

Stress Distribution and Strength Evaluation of Adhesive Bonded Single-lap Joints (단일겹침 접착제 접합부의 응력분포와 강도평가)

  • 이중삼;임재규;김연직
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.342-347
    • /
    • 2001
  • Recently, adhesive-bonding technique is wifely used in manufacturing structures. Stress and strain analysis of joints are essential to design adhesive-bonded joints structure. The single-lap adhesive joint is the design dominating the range of adhesive joints. In this study, single-lap specimens with different joint dimensions were used for the tensile-shear test and finite element calculation in of order to investigate the effect of overlap length and adhesive-bonding thickness on adhesive strength and stress distribution of the joints. Consequently, it was found that overlap lap size and thickness can be important parameters of structure joints using adhesive bonding, which is effected on adhesive strength.

  • PDF

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.