• Title/Summary/Keyword: 이중지수 평활

Search Result 6, Processing Time 0.017 seconds

On the Prediction of the Sales in Information Security Industry

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1047-1058
    • /
    • 2008
  • Prediction of total sales in information security industry is considered. Exponential smoothing and spline smoothing is applied to the time series of annual sales data. Due to the different survey items of every year, we recollect the original survey data by some basic criterion and predict the sales to 2014. We show the total sales in infonnation security industry are increasing gradually by year.

  • PDF

A Prediction of the Land-cover Change Using Multi-temporal Satellite Imagery and Land Statistical Data: Case Study for Cheonan City and Asan City, Korea (다중시기 위성영상과 토지 통계자료를 이용한 토지피복 변화 예측: 천안시·아산시를 사례로)

  • KIM, Chansoo;PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.41-56
    • /
    • 2011
  • This study analyzes the change in land-cover based on satellite imagery to draw up land-cover map in the future, and estimates the change in land category using statistical data of the land category. To estimate land category, this study applied the double exponentially smoothing method. The result of the land cover classification according to year using satellite imagery showed that the type with the largest increase in area of land cover change in the cities of Cheonan and Asan was artificial structure, followed by water, grass field and bare land. However forest, paddy, marsh and dry field were reduced. Further, the result of the time-series analysis of the land category was found to be similar to the result of the land cover classification using satellite imagery. Especially, the result of the estimation of the land category change using the double exponentially smoothing method showed that paddy, dry field, forest and marsh are anticipated to consistently decrease in area from 2010 to 2100, whereas artificial structure, water, bare land and grass field are anticipated to consistently increase. Such results can be utilized as basic data to estimate the change in land cover according to climate change in order to prepare climate change response strategies.

Development of a Speed Prediction Model for Urban Network Based on Gated Recurrent Unit (GRU 기반의 도시부 도로 통행속도 예측 모형 개발)

  • Hoyeon Kim;Sangsoo Lee;Jaeseong Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • This study collected various data of urban roadways to analyze the effect of travel speed change, and a GRU-based short-term travel speed prediction model was developed using such big data. The baseline model and the double exponential smoothing model were selected as comparison models, and prediction errors were evaluated using the RMSE index. The model evaluation results revealed that the average RMSE of the baseline model and the double exponential smoothing model were 7.46 and 5.94, respectively. The average RMSE predicted by the GRU model was 5.08. Although there are deviations for each of the 15 links, most cases showed minimal errors in the GRU model, and the additional scatter plot analysis presented the same result. These results indicate that the prediction error can be reduced, and the model application speed can be improved when applying the GRU-based model in the process of generating travel speed information on urban roadways.

Performance Evaluation of Statistical Methods Applicable to Estimating Remaining Battery Runtime of Mobile Smart Devices (모바일 스마트 장치 배터리의 남은 시간 예측에 적용 가능한 통계 기법들의 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.284-294
    • /
    • 2018
  • Statistical methods have been widely used to estimate the remaining battery runtime of mobile smart devices, such as smart phones, smart gears, tablets, and etc. However, existing work available in the literature only considers a particular statistical method. Thus, it is difficult to determine whether statistical methods are applicable to estimating thr remaining battery runtime of mobile devices or not. In this paper, we evaluated the performance of statistical methods applicable to estimating the remaining battery runtime of mobile smart devices. The statistical estimation methods evaluated in this paper are as follows: simple and moving average, linear regression, multivariate adaptive regression splines, auto regressive, polynomial curve fitting, and double and triple exponential smoothing methods. Research results presented in this paper give valuable data of insight to IT engineers who are willing to deploy statistical methods on estimating the remaining battery runtime of mobile smart devices.

Adaptive Sea Level Prediction Method Based on Harmonic Analysis (조화분석에 기반한 적응적 조위 예측 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.276-283
    • /
    • 2018
  • Climate changes consistently cause coastal accidents such as coastal flooding, so the studies on monitoring the marine environments are progressing to prevent and reduce the damage from coastal accidents. In this paper, we propose a new method to predict the sea level which can be applied to coastal monitoring systems to observe the variation of sea level and warn about the dangers. Existing sea level models are very complicated and need a lot of tidal data, so they are not proper for real-time prediction systems. On the other hand, the proposed algorithm is very simple but precise in short period such as one or two hours since we use the measured data from the sensor. The proposed method uses Kalman filter algorithm for harmonic analysis and double exponential smoothing for additional error correction. It is shown by experimental results that the proposed method is simple but predicts the sea level accurately.

On-line Prediction Algorithm for Non-stationary VBR Traffic (Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘)

  • Kang, Sung-Joo;Won, You-Jip;Seong, Byeong-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.156-167
    • /
    • 2007
  • In this paper, we develop the model based prediction algorithm for Variable-Bit-Rate(VBR) video traffic with regular Group of Picture(GOP) pattern. We use multiplicative ARIMA process called GOP ARIMA (ARIMA for Group Of Pictures) as a base stochastic model. Kalman Filter based prediction algorithm consists of two process: GOP ARIMA modeling and prediction. In performance study, we produce three video traces (news, drama, sports) and we compare the accuracy of three different prediction schemes: Kalman Filter based prediction, linear prediction, and double exponential smoothing. The proposed prediction algorithm yields superior prediction accuracy than the other two. We also show that confidence interval analysis can effectively detect scene changes of the sample video sequence. The Kalman filter based prediction algorithm proposed in this work makes significant contributions to various aspects of network traffic engineering and resource allocation.